[1] Miyata, K. et al. Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew. Chem. Int Ed. 52, 6413-6416 (2013). doi:  10.1002/anie.201301448
[2] Hatanaka, M. et al. Organic linkers control the thermosensitivity of the emission intensities from Tb(Ⅲ) and Eu(Ⅲ) in a chameleon polymer. Chem. Sci. 8, 423-429 (2017). doi:  10.1039/C6SC03006H
[3] Nakano, M. et al. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS ONE 12, e0172344 (2017). doi:  10.1371/journal.pone.0172344
[4] Wang, X. D., Wolfbeis, O. S. & Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834-7869 (2013). doi:  10.1039/c3cs60102a
[5] Cui, Y. J. et al. A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc. 134, 3979-3982 (2012). doi:  10.1021/ja2108036
[6] Marciniak, L., Prorok, K., Francés-Soriano, L., Pérez-Prieto, J. & Bednarkiewicz, A. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8, 5037-5042 (2016). doi:  10.1039/C5NR08223D
[7] N'Dala-Louika, I. et al. Ratiometric mixed Eu-Tb metal-organic framework as a new cryogenic luminescent thermometer. J. Mater. Chem. C. 5, 10933-10937 (2017). doi:  10.1039/C7TC03223D
[8] Lu, H. Y. et al. Stark sublevels of Er3+-Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer. RSC Adv. 6, 57667-57671 (2016). doi:  10.1039/C6RA10138K
[9] Wang, H. Z., Zhao, D., Cui, Y. J., Yang, Y. & Qian, G. D. A Eu/Tb-mixed MOF for luminescent high-temperature sensing. J. Solid State Chem. 246, 341-345 (2017). doi:  10.1016/j.jssc.2016.12.003
[10] Zhou, J., Xia, Z. G., Bettinelli, M. & Liu, Q. L. Photoluminescence tuning via energy transfer in Eu-doped Ba2(Gd, Tb)2Si4O13 solid-solution phosphors. RSC Adv. 6, 2046-2054 (2016). doi:  10.1039/C5RA23373A
[11] Morrison, G., Latshaw, A. M., Spagnuolo, N. R. & Zur Loye, H. C. Observation of intense X-ray scintillation in a family of mixed anion silicates, Cs3RESi4O10F2 (RE = Y, Eu-Lu), obtained via an enhanced flux crystal growth technique. J. Am. Chem. Soc. 139, 14743-14748 (2017). doi:  10.1021/jacs.7b08559
[12] Romanova, K. A., Freidzon, A. Y., Bagaturyants, A. A. & Galyametdinov, Y. G. Ab initio study of energy transfer pathways in dinuclear lanthanide complex of europium(Ⅲ) and terbium(Ⅲ) ions. J. Phys. Chem. A 118, 11244-11252 (2014). doi:  10.1021/jp509492e
[13] Bao, G. C. et al. Reversible and sensitive Hg2+ detection by a cell-permeable ytterbium complex. Inorg. Chem. 57, 120-128 (2018). doi:  10.1021/acs.inorgchem.7b02243
[14] Yu, Y. L. et al. Self-calibrating optic thermometer based on dual-emission nanocomposite. J. Alloy. Compd. 730, 12-16 (2018). doi:  10.1016/j.jallcom.2017.09.282
[15] Dai, Z. C. et al. Ratiometric time-gated luminescence probe for hydrogen sulfide based on lanthanide complexes. Anal. Chem. 86, 11883-11889 (2014). doi:  10.1021/ac503611f
[16] Yang, J., Zhang, C. M., Li, C. X., Yu, Y. N. & Lin, J. Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process. Inorg. Chem. 47, 7262-7270 (2018). doi:  10.1021/ic800586n
[17] Rao, X. T. et al. A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559-15564 (2013). doi:  10.1021/ja407219k
[18] Tanaka, F. & Ishibashi, T. Energy transfer between lanthanide ions in dinuclear complexes. J. Chem. Soc., Faraday Trans. 92, 1105-1110 (1996). doi:  10.1039/ft9969201105
[19] Zhong, Q. et al. Novel stoichiometrically erbium−ytterbium cocrystalline complex exhibiting enhanced near-infrared luminescence. Inorg. Chem. 45, 4537-4543 (2016). doi:  10.1021/ic051697y
[20] Liu, X., Zhu, J., Ni, H. T., Ma, B. & Liu, L. Luminescent properties of a polymer photoluminescent composite containing the binuclear (Eu, Tb) complex as an emitter. J. Macromol. Sci., Part B 55, 20-32 (2016). doi:  10.1080/00222348.2015.1119357
[21] Nonat, A., Liu, T., Jeannin, O., Camerel, F. & Charbonnierè, L. J. Energy transfer in supramolecular heteronuclear lanthanide dimers and application to fluoride sensing in water. Chem. Eur. J. 24, 3784-3792 (2018). doi:  10.1002/chem.201705532
[22] Debroye, E. et al. Controlled synthesis of a novel heteropolymetallic complex with selectively incorporated lanthanide(Ⅲ) ions. Inorg. Chem. 53, 1257-1259 (2014). doi:  10.1021/ic402643a
[23] Natrajan, L. S., Villaraza, A. J. L., Kenwright, A. M., Faulkner S. Controlled preparation of a heterometallic lanthanide complex containing different lanthanides in symmetrical binding pockets. Chem. Comm. 6020-6022 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19809630
[24] Grimme, S., Brandenburg, J. G., Bannwarth, C. & Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 143, 054107 (2015). doi:  10.1063/1.4927476
[25] Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297-3305 (2005). doi:  10.1039/b508541a
[26] Dolg, M., Stoll, H. & Preuss, H. Energy‐adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 90, 1730-1734 (1989). doi:  10.1063/1.456066
[27] Neese, F. The ORCA program system. Wiley Interdiscip. Rev: Comput. Mol. Sci. 2, 73-78 (2012). doi:  10.1002/wcms.81
[28] Stewart, J. J. P. Use of semiempirical methods for detecting anomalies in reported enthalpies of formation of organic compounds. J. Phys. Chem. Ref. Data 33, 713-724 (2004). doi:  10.1063/1.1643403
[29] Rocha, G. B., Freire, R. O., Simas, A. M. & Stewart, J. J. P. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 27, 1101-1111 (2006). doi:  10.1002/jcc.20425
[30] Dutra, J. D. L., Bispo, T. D. & Freire, R. O. LUMPAC lanthanide luminescence software: efficient and user friendly. J. Comput. Chem. 35, 772-775 (2014). doi:  10.1002/jcc.23542
[31] Malta, O. L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non-Cryst. Solids 354, 4770-4776 (2008). doi:  10.1016/j.jnoncrysol.2008.04.023
[32] Pitchaimani, P., Lo, K. M. & Elango, K. P. Synthesis, spectral characterization, crystal structures of lanthanide(Ⅲ) pyrrolidine dithiocarbamate complexes and their catalytic activity. J. Coord. Chem. 68, 2167-2180 (2015). doi:  10.1080/00958972.2015.1037299
[33] Eliseeva, S. V. & Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189-227 (2010). doi:  10.1039/B905604C
[34] Sato, S. et al. Luminescence of fusion materials of polymeric chain-structured lanthanide complexes. Polym. J. 47, 195-200 (2015). doi:  10.1038/pj.2014.88
[35] Fomina, I. G. et al. Synthesis and characterization of new heterodinuclear (Eu, Tb) lanthanide pivalates. Polyhedron 50, 297-305 (2013). doi:  10.1016/j.poly.2012.10.051
[36] Irfanullah, M. & Iftikhar, K. Synthesis and spectroscopic analysis of an extended series of hetero dinuclear complexes containing two different lanthanides in 1:1 stoichiometry. Inorg. Chim. Acta 394, 373-384 (2013). doi:  10.1016/j.ica.2012.08.015
[37] Anh, T. K. et al. Energy transfer between Tb3+ and Eu3+ in Y2O3 crystals. J. Lumin. 39, 215-221 (1988). http://www.sciencedirect.com/science/article/pii/0022231388900324
[38] Carrasco, I., Piccinelli, F. & Bettinelli, M. Luminescence of Tb-based materials doped with Eu3+: case studies for energy transfer processes. J. Lumin. 189, 71-77 (2017). doi:  10.1016/j.jlumin.2016.06.065
[39] Hou, Z. Y. et al. Electrospinning-derived Tb2(WO4)3: Eu3+ nanowires: energy transfer and tunable luminescence properties. Nanoscale 3, 1568-1574 (2011). doi:  10.1039/c0nr00774a
[40] Moran, D. M., May, P. S. & Richardson, F. S. Measurement and analysis of electronic energy transfer between Tb3+ and Eu3+ ions in Cs2NaY1−x−y TbxEuyCl6. Chem. Phys. 186, 77-103 (1994). doi:  10.1016/0301-0104(94)00137-5
[41] Binnemans, K. Interpretation of europium(Ⅲ) spectra. Coord. Chem. Rev. 295, 1-45 (2015). doi:  10.1016/j.ccr.2015.02.015
[42] Tanner, P. A. & Duan, C. K. Luminescent lanthanide complexes: selection rules and design. Coord. Chem. Rev. 254, 3026-3029 (2010). doi:  10.1016/j.ccr.2010.05.009
[43] Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836-850 (1953). doi:  10.1063/1.1699044
[44] Laulicht, I., Meirman, S. & Ehrenberg, B. Fluorescent linewidths and excitation transfer in Eu0.33Tb0.66P5O14 crystals. J. Lumin. 31-32, 814-816 (1984). http://www.sciencedirect.com/science/article/pii/0022231384901340