[1] https://www.idc.com/getdoc.jsp?containerId=prUS45213219.
[2] https://www.linleygroup.com/newsletters/newsletter_detail.php?num=5219.
[3] Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93-107 (2017). doi:  10.1515/nanoph-2015-0152
[4] Hänsel, A. & Heck, M. J. R. Opportunities for photonic integrated circuits in optical gas sensors. Journal of Physics: Photonics 2, 012002 (2020). doi:  10.1088/2515-7647/ab6742
[5] Soref, R. & Larenzo, J. All-silicon active and passive guided-wave components forλ= 1.3 and 1.6 μm. IEEE Journal of Quantum Electronics 22, 873-879 (1986). doi:  10.1109/JQE.1986.1073057
[6] Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics 23, 123-129 (1987). doi:  10.1109/JQE.1987.1073206
[7] Reed, G. T. et al. Silicon optical modulators. Nature Photonics 4, 518-526 (2010). doi:  10.1038/nphoton.2010.179
[8] Tong, Y. et al. An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator. IEEE Photonics Technology Letters 32, 125-128 (2020). doi:  10.1109/LPT.2019.2960238
[9] Colace, L., Masini, G. & Assanto, G. Ge-on-Si approaches to the detection of near-infrared light. IEEE Journal of Quantum Electronics 35, 1843-1852 (1999). doi:  10.1109/3.806596
[10] Assefa, S. Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80-84 (2010). doi:  10.1038/nature08813
[11] Pavesi, L. Routes toward silicon-based lasers. Materials Today 8, 18-25 (2005).
[12] Jalali, B. Making Silicon Lase. 58-65 (Scientific American, 2007).
[13] Park, H. et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Optics Express 13, 9460-9464 (2005). doi:  10.1364/OPEX.13.009460
[14] Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express 14, 9203-9210 (2006). doi:  10.1364/OE.14.009203
[15] Roelkens, G. et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. Optics Express 14, 8154-8159 (2006). doi:  10.1364/OE.14.008154
[16] Park, H. et al. Photonic integration on the hybrid silicon evanescent device platform. Advances in Optical Technologies 2008, 682978 (2008).
[17] Roelkens, G. et al. III-V/Si photonics by die-to-wafer bonding. Materials Today 10, 36-43 (2007).
[18] Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nature Photonics 4, 511-517 (2010). doi:  10.1038/nphoton.2010.167
[19] Liang, D. et al. Hybrid integrated platforms for silicon photonics. Materials 3, 1782-1802 (2010). doi:  10.3390/ma3031782
[20] Roelkens, G. et al. III-V/Silicon photonics for on-chip and intra-chip optical interconnects. Laser & Photonics Reviews 4, 751-779 (2010).
[21] Periyanayagam, G. K. et al. Lasing characteristics of 1.2 μm GaInAsP LD on InP/Si substrate. Physica Status Solidi (A) 215, 1700357 (2018). doi:  10.1002/pssa.201700357
[22] https://www.soitec.com/en/products/smart-cut.
[23] Maszara, W. P. et al. Bonding of silicon wafers for silicon-on-insulator. Journal of Applied Physics 64, 4943-4950 (1988). doi:  10.1063/1.342443
[24] Chang, L. et al. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4, 036103 (2019). doi:  10.1063/1.5065533
[25] Chang, L. et al. Low loss (Al)GaAs on an insulator waveguide platform. Optics Letters 44, 4075-4078 (2019). doi:  10.1364/OL.44.004075
[26] Joly, JP. et al. New SiC on insulator wafers based on the smart-cut® approach and their potential applications. in Progress in SOI Structures and Devices Operating at Extreme Conditions (eds Balestra, F., Nazarov, A. & Lysenko, V. S.) (Dordrecht: Springer Netherlands, 2002), 31-38.
[27] Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nature Photonics 14, 330-334 (2020). doi:  10.1038/s41566-019-0556-6
[28] Chen, L., Dong, P. & Lipson, M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express 16, 11513-11518 (2008). doi:  10.1364/OE.16.011513
[29] Rabarot, M. et al. Fabrication of Silicon on Diamond (SOD) substrates by either the Bonded and Etched-back SOI (BESOI) or the Smart-CutTM technology. Solid-State Electronics 54, 158-163 (2010). doi:  10.1016/j.sse.2009.12.012
[30] Liang, D. et al. Fabrication of silicon-on-diamond substrate and low-loss optical waveguides. IEEE Photonics Technology Letters 23, 657-659 (2011). doi:  10.1109/LPT.2011.2123089
[31] Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64-67 (2011). doi:  10.1038/nature10067
[32] Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Optics Express 26, 23728-23739 (2018). doi:  10.1364/OE.26.023728
[33] Shoji, Y. et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters 92, 071117 (2008). doi:  10.1063/1.2884855
[34] Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE Journal of Selected Topics in Quantum Electronics 22, 4403408 (2016).
[35] Pintus, P. et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics. Journal of Lightwave Technology 35, 1429-1437 (2017). doi:  10.1109/JLT.2016.2644626
[36] Jia, B. 2D optical materials and the implications for photonics. APL Photonics 4, 080401 (2019). doi:  10.1063/1.5120030
[37] Gösele, U. & Tong, Q. Y. Semiconductor wafer bonding. Annual Review of Materials Science 28, 215-241 (1998). doi:  10.1146/annurev.matsci.28.1.215
[38] Gosele, U. et al. Semiconductor wafer bonding. A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics. Proceedings of the 20th International Semiconductor Conference. Sinaia, Romania: IEEE, 1997, 23-32.
[39] Gösele, U. et al. Fundamental issues in wafer bonding. Journal of Vacuum Science & Technology A 17, 1145-1152 (1999).
[40] Tong, Q. Y. et al. Low temperature InP/Si wafer bonding. Applied Physics Letters 84, 732-734 (2004). doi:  10.1063/1.1644615
[41] Pasquariello, D. & Hjort, K. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE Journal of Selected Topics in Quantum Electronics 8, 118-131 (2002). doi:  10.1109/2944.991407
[42] Liang, D. et al. Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III-V compound semiconductors-to-silicon photonic integrated circuits. Journal of Electronic Materials 37, 1552-1559 (2008). doi:  10.1007/s11664-008-0489-1
[43] Liang, D. & Bowers, J. E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the Silicon-On-Insulator substrate. Journal of Vacuum Science & Technology B 26, 1560-1568 (2008).
[44] Liang, D. et al. A Tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption. Presented at 2016 Optical Fiber Communications Conference and Exhibition (OFC). Anaheim, CA, USA: IEEE, 2016.
[45] Tong, Q.-Y., Fountain, G. & Enquist, P. Room temperature SiO2/SiO2 covalent bonding. Applied Physics Letters 89, 042110 (2006). doi:  10.1063/1.2240232
[46] Chao, Y. L. et al. Ammonium hydroxide effect on low-temperature wafer bonding energy enhancement. Electrochemical and Solid-State Letters 8, G74-G77 (2005). doi:  10.1149/1.1857671
[47] Li, D. et al. Investigation of Au/Si eutectic wafer bonding for MEMS accelerometers. Micromachines 8, 158 (2017). doi:  10.3390/mi8050158
[48] Niklaus, F. et al. Low temperature full wafer adhesive bonding of structured wafers. Sensors and Actuators A: Physical 92, 235-241 (2001). doi:  10.1016/S0924-4247(01)00568-4
[49] Christiaens, I. et al. Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding. Journal of Lightwave Technology 23, 517-523 (2005). doi:  10.1109/JLT.2004.841783
[50] Roelkens, G. et al. Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene. Journal of The Electrochemical Society 153, G1015-G1019 (2006). doi:  10.1149/1.2352045
[51] Niklaus, F. et al. Low-temperature full wafer adhesive bonding. Journal of Micromechanics and Microengineering 11, 100-107 (2001). doi:  10.1088/0960-1317/11/2/303
[52] Keyvaninia, S. et al. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express 3, 35-46 (2013). doi:  10.1364/OME.3.000035
[53] Liang, D. et al. High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits. Electrochemical Solid-State Letters 12, H101-H104 (2009). doi:  10.1149/1.3065994
[54] Luo, X. et al. High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits. Frontiers in Materials 2, 28 (2015).
[55] Jones, R. et al. Heterogeneously integrated InP\/Silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnology Magazine 13, 17-26 (2019). doi:  10.1109/MNANO.2019.2891369
[56] Sysak, M. N. et al. Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. Optics Express 15, 15041-15046 (2007). doi:  10.1364/OE.15.015041
[57] Sysak, M. N. et al. Hybrid silicon laser technology: a thermal perspective. IEEE Journal of Selected Topics in Quantum Electronics 17, 1490-1498 (2011). doi:  10.1109/JSTQE.2011.2109940
[58] Yu, H. et al. 400Gbps fully integrated DR4 silicon photonics transmitter for data center applications. Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, California: IEEE, 2020, T3H.6.
[59] https://newsroom.intel.com/news/intel-demonstrates-industry-first-co-packaged-optics-ethernet-switch/#gs.b8j4n0.
[60] Yu, H. et al. 100Gbps CWDM4 silicon photonics transmitter for 5G applications. Proceedings of 2019 Optical Fiber Communication Conference (OFC). San Diego, California: OSA, 2019, W3E.4.
[61] Doylend, J. K. & Gupta, S. An overview of silicon photonics for LIDAR. Proceedings of SPIE 11285, Silicon Photonics XV. San Francisco, California, United States: SPIE, 2020.
[62] Developpement, Y. Silicon photonics and photonic integrated circuits 2019 (2019). at https://s3.i-micronews.com/uploads/2019/04/YD19015_Silicon_Photonics_SiPh_and_Photonic_IC_PIC_yole_flyer.pdf.
[63] Fish, G. High bandwidth transceivers using heterogenous integration of III-V with silicon photonics. Optical Fiber Communication Conference. Los Angeles, California: OSA, 2017, M3B.4.
[64] Park, H. et al. Heterogeneous integration of silicon photonic devices and integrated circuits. Proceedings of 2015 Conference on Lasers and Electro-Optics Pacific Rim. Busan: IEEE, 2015, 25J3_2.
[65] Ramaswamy, A. et al. A WDM 4x28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs. Proceedings of 2015 Optical Fiber Communication Conference Post Deadline Papers. Los Angeles, California: IEEE, 2015, Th5B.5.
[66] Koch, B. R. et al. Integrated Silicon Photonic Laser Sources for Telecom and Datacom. Proceedings of 2013 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Anaheim, California: IEEE, 2013, PDP5C.8.
[67] https://www.juniper.net/assets/us/en/local/pdf/nxtwork/silicon-photonics.pdf.
[68] Jain, S. et al. Silicon fab-compatible contacts to n-InP and p-InGaAs for photonic applications. Applied Physics Letters 100, 201103 (2012). doi:  10.1063/1.4714725
[69] Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Optics Express 19, 24090-24101 (2011). doi:  10.1364/OE.19.024090
[70] Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619-624 (2017). doi:  10.1364/OPTICA.4.000619
[71] Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photonics 5, 020903 (2020). doi:  10.1063/1.5131683
[72] Haglund, E. P. et al. Silicon-integrated short-wavelength hybrid-cavity VCSEL. Optics Express 23, 33634-33640 (2015). doi:  10.1364/OE.23.033634
[73] Kumari, S. et al. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm. Laser & Photonics Reviews 12, 1700206 (2018).
[74] Louderback, D. A. et al. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electronics Letters 40, 1064-1065 (2004). doi:  10.1049/el:20045585
[75] Tsunemi, Y. et al. 1.55-μm VCSEL with polarization-independent HCG mirror on SOI. Optics Express 21, 28685-28692 (2013). doi:  10.1364/OE.21.028685
[76] Park, H. et al. Heterogeneous silicon nitride photonics. Optica 7, 336-337 (2020). doi:  10.1364/OPTICA.391809
[77] Park, H. et al. Heterogeneous gallium-arsenide lasers on silicon-nitride. Conference on Lasers and Electro-Optics. Washington, USA: OSA, 2020.
[78] Spott, A. et al. Quantum cascade laser on silicon. Optica 3, 545-551 (2016). doi:  10.1364/OPTICA.3.000545
[79] Soref, R. A. et al. Silicon waveguided components for the long-wave infrared region. Journal of Optics A: Pure and Applied Optics 8, 840-848 (2006). doi:  10.1088/1464-4258/8/10/004
[80] Stanton, E. J. et al. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Optics Express 23, 11272-11283 (2015). doi:  10.1364/OE.23.011272
[81] Evans, A. et al. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Applied Physics Letters 91, 071101 (2007). doi:  10.1063/1.2770768
[82] Spott, A. et al. Heterogeneous integration for mid-infrared silicon photonics. IEEE Journal of Selected Topics in Quantum Electronics 23, 8200810 (2017).
[83] Stanton, E. J. et al. Multi-spectral quantum cascade lasers on silicon with integrated multiplexers. Photonics 6, 6 (2019). doi:  10.3390/photonics6010006
[84] Spott, A. et al. A CW mid-infrared hybrid silicon laser at room temperature. Proceedings of 2014 IEEE Photonics Conference. San Diego, CA, USA: IEEE, 2014, 1-2.
[85] Vasiliev, A. et al. 3.8 μm heterogeneously integrated III-V on silicon micro-spectrometer. Presented at the 18th European Conference on Integrated Optics 2016 (ECIO). Warsaw, Poland: ECIO, 2016.
[86] Wang, R. et al. Widely tunable 2.3 um III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Research 6, 858-866 (2018). doi:  10.1364/PRJ.6.000858
[87] Wang, R. et al. Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers. Optics Express 24, 28977-28986 (2016). doi:  10.1364/OE.24.028977
[88] Volet, N. et al. Semiconductor optical amplifiers at 2.0-μm wavelength on silicon. Laser & Photonics Reviews 11, 1600165 (2017).
[89] Spott, A. et al. Interband cascade laser on silicon. Optica 5, 996-1005 (2018). doi:  10.1364/OPTICA.5.000996
[90] Lin, H. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393-420 (2017). doi:  10.1515/nanoph-2017-0085
[91] Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Physical Review 112, 1940-1949 (1958). doi:  10.1103/PhysRev.112.1940
[92] Tran, M. A. et al. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics 4, 111101 (2019). doi:  10.1063/1.5124254
[93] Henry, C. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics 18, 259-264 (1982). doi:  10.1109/JQE.1982.1071522
[94] Coldren, L. A. et al. Diode Lasers and Photonic Integrated Circuits. 2nd edn. (Canada: Wiley, 2012).
[95] Osinski, M. & Buus, J. Linewidth broadening factor in semiconductor lasers--an overview. IEEE Journal of Quantum Electronics 23, 9-29 (1987). doi:  10.1109/JQE.1987.1073204
[96] Santis, C. T. et al. Sub-kHz quantum linewidth semiconductor laser on silicon chip. Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2015, 1-2.
[97] Tran, M. A. et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Applied Sciences 8, 1139 (2018). doi:  10.3390/app8071139
[98] Boller, K. J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2020).
[99] Xiang, C. et al. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 bragg grating. Optics Letters 44, 3825-3828 (2019). doi:  10.1364/OL.44.003825
[100] Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20-21 (2020). doi:  10.1364/OPTICA.384026
[101] Kazarinov, R. & Henry, C. The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator. IEEE Journal of Quantum Electronics 23, 1401-1409 (1987). doi:  10.1109/JQE.1987.1073531
[102] Tran, M. A. et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE Journal of Selected Topics in Quantum Electronics 26, 1500514 (2020).
[103] Rideout, W. et al. Measurement of the carrier dependence of differential gain, refractive index, and linewidth enhancement factor in strained‐layer quantum well lasers. Applied Physics Letters 56, 706-708 (1990). doi:  10.1063/1.102688
[104] Schwarz, U. T. et al. Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers. Applied Physics Letters 83, 4095-4097 (2003). doi:  10.1063/1.1628825
[105] MALIK, A. et al. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photonics Research 8, 1551-1557 (2020). doi:  10.1364/PRJ.394726
[106] Grillot, F. et al. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs–GaAs quantum-dot lasers. IEEE Journal of Quantum Electronics 44, 946-951 (2008). doi:  10.1109/JQE.2008.2003106
[107] Zhang, Z. et al. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE Journal of Selected Topics in Quantum Electronics 25, 1900509 (2019).
[108] Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics 22, 1915-1921 (1986). doi:  10.1109/JQE.1986.1073149
[109] Kurczveil, G. et al. Robust hybrid quantum dot laser for integrated silicon photonics. Optics Express 24, 16167-16174 (2016). doi:  10.1364/OE.24.016167
[110] Dong, B. et al. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Optics Letters 44, 5755-5758 (2019). doi:  10.1364/OL.44.005755
[111] Guo, J. et al. Widely tunable, narrow linewidth quantum dot lasers heterogeneously integrated on silicon. Presented at the Conference on Lasers and Electro-Optics. Virtual: OSA, 2020.
[112] Komljenovic, T. et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE Journal of Selected Topics in Quantum Electronics 21, 1501909 (2015).
[113] Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81-85 (2018). doi:  10.1038/s41586-018-0065-7
[114] Morton, P. A. & Morton, M. J. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. Journal of Lightwave Technology 36, 5048-5057 (2018). doi:  10.1109/JLT.2018.2817175
[115] Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters 40, 939-941 (1982). doi:  10.1063/1.92959
[116] Helms, J. & Petermann, K. A simple analytic expression for the stable operation range of laser diodes with optical feedback. IEEE Journal of Quantum Electronics 26, 833-836 (1990). doi:  10.1109/3.55523
[117] Zhang, Z. et al. Coherent and incoherent optical feedback sensitivity of high-coherence Si/III-V hybrid Lasers. Proceedings of 2019 Optical Fiber Communication Conference (OFC). San Diego: OSA, 2019, 1-3.
[118] Liu, A. Y. et al. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Optics Express 25, 9535-9543 (2017). doi:  10.1364/OE.25.009535
[119] Duan, J. et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Applied Physics Letters 112, 251111 (2018). doi:  10.1063/1.5025879
[120] Duan, J. et al. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photonics Research 7, 1222-1228 (2019). doi:  10.1364/PRJ.7.001222
[121] Park, G. et al. Low-threshold oxide-confined 1.3-μm quantum-dot laser. IEEE Photonics Technology Letters 12, 230-232 (2000). doi:  10.1109/68.826897
[122] Kageyama, T. et al. Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers. Proceedings of 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). Munich, Germany: IEEE, 2011.
[123] Sugawara, M. & Usami, M. Quantum dot devices: handling the heat. Nature Photonics 3, 30-31 (2009). doi:  10.1038/nphoton.2008.267
[124] Capua, A. et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Optics Express 15, 5388-5393 (2007). doi:  10.1364/OE.15.005388
[125] Moore, S. A. et al. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photonics Technology Letters 18, 1861-1863 (2006). doi:  10.1109/LPT.2006.881206
[126] Jung, D. et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Applied Physics Letters 112, 153507 (2018). doi:  10.1063/1.5026147
[127] Ortner, G. et al. External cavity InAs/InP quantum dot laser with a tuning range of 166 nm. Applied Physics Letters 88, 121119 (2006). doi:  10.1063/1.2187431
[128] Beausoleil, R. G. Large-scale integrated photonics for high-performance interconnects. ACM Journal on Emerging Technologies in Computing Systems 7, 6 (2011).
[129] Wojcik, G. L. et al. A single comb laser source for short reach WDM interconnects. Proceedings of SPIE 7230, Novel In-Plane Semiconductor Lasers VIII. San Jose, USA: SPIE, 2009, 72300M.
[130] Kurczveil, G. et al. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. Presented at 2018 IEEE International Semiconductor Laser Conference. Santa Fe, NM, USA: IEEE, 2018.
[131] Kurczveil, G. et al. Hybrid silicon quantum dot comb laser with record wide comb width. Presented at the Frontiers in Optics (FiO). Virtual (2020).
[132] Kurczveil, G. et al. Error-free operation in a hybrid-silicon quantum dot comb laser. IEEE Photonics Technology Letters 30, 71-74 (2018). doi:  10.1109/LPT.2017.2775145
[133] London, Y. et al. Energy efficiency analysis of comb source carrier-injection ring-based silicon photonic link. IEEE Journal of Selected Topics in Quantum Electronics 26, 3300113 (2020).
[134] Srinivasan, S. et al. 160 Gb/s optical link using Quantum-Dot comb laser source and SiGe APD. Presented at the IEEE Photonics Conference. Virtual, 2020.
[135] Liang, D. et al. Fully-integrated heterogeneous DML transmitters for high-performance computing. Journal of Lightwave Technology 38, 3322-3337 (2020). doi:  10.1109/JLT.2019.2959048
[136] Zhang, C. et al. Hybrid quantum-dot microring laser on silicon. Optica 6, 1145-1151 (2019). doi:  10.1364/OPTICA.6.001145
[137] Uvin, S. et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Optics Express 26, 18302-18309 (2018). doi:  10.1364/OE.26.018302
[138] Liang, D. et al. Heterogeneous multi-wavelength optical injection locked System-on-chip: a proposal & proof-of-concept experiment. Presented at 2019 Asia Communications and Photonics Conference. Chengdu, China: OSA, 2019.
[139] Liang, D. et al. Optical injection-locked high-speed heterogeneous quantum-dot microring lasers. Presented at the 45th European Conference on Optical Communication. Dublin, Ireland: IEEE, 2019.
[140] Tossoun, B. et al. High-speed 1310 nm hybrid silicon quantum dot photodiodes with ultra-low dark current. Presented at the 76th Device Research Conference. Santa Barbara, CA, USA: IEEE, 2018.
[141] Tossoun, B. et al. Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon. Optica 6, 1277-1281 (2019). doi:  10.1364/OPTICA.6.001277
[142] Tossoun, B. et al. High-speed III-V on Si quantum dot avalanche photodiodes with polarization dependent gain. Presented at the IEEE Photonics Conference. Vancouver, Canada, 2020.
[143] Boyd, R. Nonlinear Optics. 3rd edn. (Academic Press, Boston, 2008).
[144] Kippenberg, T. J. et al. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Physical Review Letters 93, 083904 (2004). doi:  10.1103/PhysRevLett.93.083904
[145] Li, J. et al. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Physical Review Letters 109, 233901 (2012). doi:  10.1103/PhysRevLett.109.233901
[146] Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photonics 6, 369-373 (2012). doi:  10.1038/nphoton.2012.109
[147] Diddams, S. A. A. The evolving optical frequency comb[Invited]. Journal of the Optical Society of America B 27, B51-B62 (2010). doi:  10.1364/JOSAB.27.000B51
[148] Pu, M. et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823-826 (2016). doi:  10.1364/OPTICA.3.000823
[149] Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics 14, 57-62 (2020). doi:  10.1038/s41566-019-0537-9
[150] Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications 11, 1331 (2020). doi:  10.1038/s41467-020-15005-5
[151] Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser & Photonics Reviews 12, 1800149 (2018).
[152] Mariani, S. et al. Second-harmonic generation in AlGaAs microdisks in the telecom range. Optics Letters 39, 3062-3065 (2014). doi:  10.1364/OL.39.003062
[153] Schneider, K. et al. Gallium phosphide-on-silicon dioxide photonic devices. Journal of Lightwave Technology 36, 2994-3002 (2018). doi:  10.1109/JLT.2018.2829221
[154] Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nature Photonics 13, 158-169 (2019). doi:  10.1038/s41566-019-0358-x
[155] Kippenberg, T. J. et al. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018). doi:  10.1126/science.aan8083
[156] Liang, D. et al. Integrated finely tunable microring laser on silicon. Nature Photonics 10, 719-722 (2016). doi:  10.1038/nphoton.2016.163
[157] Hiraki, T. et al. Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator. Nature Photonics 11, 482-485 (2017). doi:  10.1038/nphoton.2017.120
[158] Han, J. H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nature Photonics 11, 486-490 (2017). doi:  10.1038/nphoton.2017.122
[159] Thiessen, T. et al. 30 GHz heterogeneously integrated capacitive InP-on-Si Mach-Zehnder modulators. Optics Express 27, 102-109 (2019). doi:  10.1364/OE.27.000102
[160] Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615-618 (2004). doi:  10.1038/nature02310
[161] Milivojevic, B. et al. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance. Proceedings of SPIE 8990, Silicon Photonics IX. San Francisco: SPIE, 2014.
[162] Huang, X. et al. Heterogeneous MOS microring resonators. Presented at 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA: IEEE, 2017.
[163] Li, Q. et al. Low parasitic capacitance III-V/Si hybrid MOS optical modulator toward high-speed modulation. Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA: IEEE, 2020, 1-3.
[164] Hiraki, T. et al. III-V/Si MOS capacitor mach-zehnder modulator with low temperature sensitivity. Proceedings of the IEEE 16th International Conference on Group IV Photonics (GFP). Singapore: IEEE, 2019, 1-2.
[165] Srinivasan, S., Liang, D. & Beausoleil, R. G. Heterogeneous SISCAP microring modulator for high-speed optical communication. Presented at the ECOC. Brussel, Belgium, 2020.
[166] Liang, D. et al. A fully-integrated multi-λ hybrid DML transmitter. Presented at the Optical Fiber Communication Conference. San Diego, CA, USA: OSA, 2018.
[167] Dai, D. X., Fang, A. & Bowers, J. E. Hybrid silicon lasers for optical interconnects. New Journal of Physics 11, 125016 (2009). doi:  10.1088/1367-2630/11/12/125016
[168] Liang, D. et al. Integrated green DWDM photonics for next-gen high-performance computing. Presented at 2020 Optical Fiber Communications Conference and Exhibition. San Diego, CA, USA: IEEE, 2020.
[169] Thiessen, T. et al. Back-side-on-BOX heterogeneously integrated III-V-on-silicon O-band distributed feedback lasers. Journal of Lightwave Technology 38, 3000-3006 (2020). doi:  10.1109/JLT.2020.2978413
[170] Durel, J. et al. First demonstration of a back-side integrated heterogeneous hybrid III-V/Si DBR lasers for Si-photonics applications. Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA: IEEE, 2016, 22.2.1-22.2.4.
[171] Durel, J. et al. Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics. Proceedings of SPIE 9750, Integrated Optics: Devices, Materials, and Technologies XX. San Francisco, USA: SPIE, 2016.
[172] van der Tol, J. et al. Photonic integration in indium-phosphide membranes on silicon. IET Optoelectronics 5, 218-225 (2011). doi:  10.1049/iet-opt.2010.0056
[173] van der Tol, J. J. G. M. et al. InP Membrane on Silicon (IMOS) photonics. IEEE Journal of Quantum Electronics 56, 6300107 (2020).
[174] Smit, M. et al. An introduction to InP-based generic integration technology. Semiconductor Science and Technology 29, 083001 (2014). doi:  10.1088/0268-1242/29/8/083001
[175] Menard, E. et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters 84, 5398-5400 (2004). doi:  10.1063/1.1767591
[176] Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials 5, 33-38 (2006). doi:  10.1038/nmat1532
[177] Justice, J. et al. Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers. Nature Photonics 6, 610-614 (2012). doi:  10.1038/nphoton.2012.204
[178] de Groote, A. et al. Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters. Optics Express 24, 13754-13762 (2016). doi:  10.1364/OE.24.013754
[179] Guilhabert, B. et al. Hybrid integration of an evanescently coupled AlGaAs microdisk resonator with a silicon waveguide by nanoscale-accuracy transfer printing. Optics Letters 43, 4883-4886 (2018). doi:  10.1364/OL.43.004883
[180] Katsumi, R. et al. Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics 4, 036105 (2019). doi:  10.1063/1.5087263
[181] Park, J. B. et al. Stable and efficient transfer-printing including repair using a GaN-based microscale light-emitting diode array for deformable displays. Scientific Reports 9, 11551 (2019). doi:  10.1038/s41598-019-47449-1
[182] Roelkens, G. et al. Transfer printing for silicon photonics transceivers and interposers. Proceedings of 2018 IEEE Optical Interconnects Conference (OI). Santa Fe, NM, USA: IEEE, 2018, 13-14.
[183] Zhang, J. et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics 4, 110803 (2019). doi:  10.1063/1.5120004
[184] Zhang, C., Liang, D. & Bowers, J. E. MOCVD regrowth of InP on hybrid silicon substrate. ECS Solid State Letters 2, Q82-Q86 (2013). doi:  10.1149/2.008311ssl
[185] Matsuo, S. et al. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Optics Express 22, 12139-12147 (2014). doi:  10.1364/OE.22.012139
[186] Fujii, T. et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica 7, 838-846 (2020). doi:  10.1364/OPTICA.391700
[187] Matsuo, S. & Kakitsuka, T. Low-operating-energy directly modulated lasers for short-distance optical interconnects. Advances in Optics and Photonics 10, 567-643 (2018). doi:  10.1364/AOP.10.000567
[188] Matsuo, S. et al. Directly modulated DFB laser on SiO2/Si substrate for datacenter networks. Journal of Lightwave Technology 33, 1217-1222 (2015). doi:  10.1109/JLT.2014.2386875
[189] Nishi, H. et al. Low-operating energy heterogeneously integrated photonic-crystal laser on Si waveguide. Proceedings of 2018 IEEE International Semiconductor Laser Conference (ISLC). Santa Fe, NM, USA: IEEE, 2018, 1-2.
[190] Fujii, T. et al. Temperature characteristics of 1.3-μm membrane lasers on InP-on-insulator substrate. Proceedings of 2018 IEEE International Semiconductor Laser Conference (ISLC). Santa Fe, NM, USA: IEEE, 2018, 1-2.
[191] Fujii, T. et al. Heterogeneously integrated membrane lasers on si substrate for low operating energy optical links. IEEE Journal of Selected Topics in Quantum Electronics 24, 1500408 (2018).
[192] Diamantopoulos, N. et al. Net 321.24-Gb/s IMDD transmission based on a >100-GHz bandwidth directly-modulated laser. Proceedings of 2020 Optical Fiber Communication Conference Postdeadline Papers. San Diego, USA: OSA, 2020, 1-3.
[193] Yamaoka, S. et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC. Proceedings of the 45th European Conference on Optical Communication (ECOC 2019). IET, 2019, 1-4.
[194] Diamantopoulos, N. P. et al. 400-Gb/s DMT-SDM transmission based on membrane DML-array-on-silicon. Journal of Lightwave Technology 37, 1805-1812 (2019). doi:  10.1109/JLT.2018.2885792
[195] Nishi, H. et al. Integration of eight-channel directly modulated membrane-laser array and SiN AWG multiplexer on Si. Journal of Lightwave Technology 37, 266-273 (2019). doi:  10.1109/JLT.2018.2873742
[196] Kanno, E. et al. Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates. Optics Express 26, 1268-1277 (2018). doi:  10.1364/OE.26.001268
[197] Hiraki, T. et al. Heterogeneously integrated low-power-consumption semiconductor optical amplifier on Si platform. Proceedings of 2019 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2019, 1-2.
[198] Hiraki, T. et al. Membrane InGaAsP mach–zehnder modulator integrated with optical amplifier on Si platform. Journal of Lightwave Technology 38, 3030-3036 (2020). doi:  10.1109/JLT.2020.2977426
[199] Aihara, T. et al. Mach-zehnder modulator using membrane InGaAsP phase shifters and SOAs inside interferometer arms on Si photonics platform. Proceedings of the 2020 Optical Fiber Communication Conference (OFC). San Diego, USA: OSA, 2020, 1-3.
[200] Nishi, H. et al. Integrated PAM-4 WDM receiver by InGaAsP-based membrane PDs and SiN demultiplexer on Si. Proceedings of 2019 IEEE Photonics Conference (IPC). San Antonio, TX, USA: IEEE, 2019, 1-2.
[201] Maeda, Y. et al. Si-waveguide-coupled membrane InGaAsP-multiple-quantum-well photodetector with large bandwidth at high optical input power. Proceedings of 2020 Optical Fiber Communication Conference (OFC). San Diego, USA: OSA, 2020, 1-3.
[202] Hu, Y. et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate. Presented at 2018 IEEE Photonics Conference. Reston, VA, USA: IEEE, 2018.
[203] Hu, Y. et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light: Science & Applications 8, 93 (2019).
[204] Baumgartner, Y. et al. Novel CMOS-compatible ultralow capacitance hybrid III-V/Si photodetectors tested up to 32 Gbps NRZ. Proceedings of 2019 Optical Fiber Communication Conference (OFC). San Diego, USA: OSA, 2019, 1-3.
[205] Besancon, C. et al. Comparison of AlGaInAs-based laser behavior grown on hybrid InP-SiO2/Si and InP substrates. IEEE Photonics Technology Letters 32, 469-472 (2020). doi:  10.1109/LPT.2020.2979254
[206] Besancon, C. et al. Epitaxial growth of high-quality AlGaInAs-based active structures on a directly bonded InP-SiO2/Si substrate. Physica Status Solidi (A) 217, 1900523 (2020). doi:  10.1002/pssa.201900523
[207] Liu, A. Y. et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Applied Physics Letters 104, 041104 (2014). doi:  10.1063/1.4863223
[208] Chen, S. et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nature Photonics 10, 307-311 (2016). doi:  10.1038/nphoton.2016.21
[209] Bioud, Y. A. et al. Uprooting defects to enable high-performance III-V optoelectronic devices on silicon. Nature Communications 10, 4322 (2019). doi:  10.1038/s41467-019-12353-9
[210] Scaccabarozzi, A. et al. Integration of InGaP/GaAs/Ge triple-junction solar cells on deeply patterned silicon substrates. Progress in Photovoltaics: Research and Applications 24, 1368-1377 (2016). doi:  10.1002/pip.2798
[211] Yamaguchi, M. et al. Defect reduction effects in GaAs on Si substrates by thermal annealing. Applied Physics Letters 53, 2293-2295 (1988). doi:  10.1063/1.100257
[212] Bolkhovityanov, Y. B. & Pchelyakov, O. P. GaAs epitaxy on Si substrates: modern status of research and engineering. Physics-Uspekhi 51, 437-456 (2008). doi:  10.1070/PU2008v051n05ABEH006529
[213] Wan, Y. et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Optics Letters 41, 1664-1667 (2016). doi:  10.1364/OL.41.001664
[214] Li, Q. et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Optics Express 24, 21038-21045 (2016). doi:  10.1364/OE.24.021038
[215] Kwoen, J. et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Optics Express 26, 11568-11576 (2018). doi:  10.1364/OE.26.011568
[216] Yu, Q. et al. Heterogeneous photodiodes on silicon nitride waveguides. Optics Express 28, 14824-14830 (2020). doi:  10.1364/OE.387939
[217] Zhang, M. et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi:  10.1364/OPTICA.4.001536
[218] https://www.nanoln.com/.
[219] He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364 (2019). doi:  10.1038/s41566-019-0378-6
[220] Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi:  10.1038/s41586-019-1008-7
[221] Abel, S. et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning. Journal of Lightwave Technology 34, 1688-1693 (2016). doi:  10.1109/JLT.2015.2510282
[222] Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials 18, 42-47 (2019). doi:  10.1038/s41563-018-0208-0
[223] Thomson, D. et al. Roadmap on silicon photonics. Journal of Optics 18, 073003 (2016). doi:  10.1088/2040-8978/18/7/073003
[224] Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4, 143 (2015). doi:  10.1515/nanoph-2014-0024
[225] Zhang, S. et al. Heterogeneous III-V silicon photonic integration: components and characterization. Frontiers of Information Technology & Electronic Engineering 20, 472-480 (2019).
[226] Ramirez, J. M. et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 26, 6100213 (2020).