[1] Turner, M. D. et al. Miniature chiral beam splitter based on gyroid photonic crystals. Nature Photonics 7, 801-805 (2013). doi:  10.1038/nphoton.2013.233
[2] Cumming, B. P. et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Optics express 19, 9419-9425 (2011). doi:  10.1364/OE.19.009419
[3] Melissinaki, V. et al. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3, 045005 (2011). doi:  10.1088/1758-5082/3/4/045005
[4] Yu, H. Y., Zhang, Q. M. & Gu, M. Three-dimensional direct laser writing of biomimetic neuron structures. Optics express 26, 32111-32117. (2018). doi:  10.1364/OE.26.032111
[5] Malinauskas, M. et al. 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5, 839-858 (2014). doi:  10.3390/mi5040839
[6] Cui, J. Z. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164-168 (2019). doi:  10.1038/s41586-019-1713-2
[7] Yu, Y. R. et al. Bioinspired helical microfibers from microfluidics. Advanced Materials 29, 1605765 (2017). doi:  10.1002/adma.201605765
[8] Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light: Science & Applications 8, 1-14 (2019).
[9] Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766-769 (1999). doi:  10.1038/21619
[10] Liu, M. Y. et al. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 8, 16819-16840 (2016). doi:  10.1039/C5NR09078D
[11] Lee, Y. J. & Braun, P. V. Tunable inverse opal hydrogel pH sensors. Advanced Materials 15, 563-566 (2003). doi:  10.1002/adma.200304588
[12] Qiu, Y. & Park, K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53, 321-339 (2001). doi:  10.1016/S0169-409X(01)00203-4
[13] Žigon-Branc, S. et al. Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell microspheroids. Tissue Engineering Part A 25, 1369-1380 (2019). doi:  10.1089/ten.tea.2018.0237
[14] Yadid, M., Feiner, R. & Dvir, T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Letters 19, 2198-2206 (2019). doi:  10.1021/acs.nanolett.9b00472
[15] Ovsianikov, A. et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12, 851-858 (2011). doi:  10.1021/bm1015305
[16] Käpylä, E. et al. Direct laser writing of synthetic poly (amino acid) hydrogels and poly (ethylene glycol) diacrylates by two-photon polymerization. Materials Science and Engineering: C 43, 280-289 (2014). doi:  10.1016/j.msec.2014.07.027
[17] Yu, H. et al. Biocompatible three-dimensional hydrogel microstructures fabricated by two-photon polymerization. Proceedings of SPIE 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology. Chengdu: SPIE, 2018.
[18] Benavides, B., Valandro, S. & Kurtz, D. M. Jr. Preparation of platinum nanoparticles using iron (ii) as reductant and photosensitized H 2 generation on an iron storage protein scaffold. RSC Advances 10, 5551-5559 (2020). doi:  10.1039/D0RA00341G
[19] Torgersen, J. et al. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. Journal of Biomedical Optics 17, 105008 (2012).
[20] Ding, H. B. et al. 3D computer-aided nanoprinting for solid-state nanopores. Nanoscale Horizons 3, 312-316 (2018). doi:  10.1039/C8NH00006A
[21] Gou, X. R. et al. Mechanical property of PEG hydrogel and the 3D red blood cell microstructures fabricated by two-photon polymerization. Applied Surface Science 416, 273-280 (2017). doi:  10.1016/j.apsusc.2017.04.178
[22] Shen, N. et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mechanics & Chemistry of Biosystems: MCB 2, 17-25 (2005).
[23] Torgersen, J. et al. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Advanced Functional Materials 23, 4542-4554 (2013). doi:  10.1002/adfm.201203880
[24] Nemir, S., Hayenga, H. N. & West, J. L. PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnology and Bioengineering 105, 636-644 (2010). doi:  10.1002/bit.22574
[25] Jayakumar, A., Jose, V. K. & Lee, J. M. Hydrogels for Medical and Environmental Applications. Small Methods 11, 1900735 (2020).
[26] Yoon, S. J. et al. Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules 22, 1513 (2017). doi:  10.3390/molecules22091513
[27] Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics 12, 555-563 (1973). doi:  10.1364/AO.12.000555
[28] Degirmenci, M., Hizal, G. & Yagci, Y. Synthesis and characterization of macrophotoinitiators of poly (ε-caprolactone) and their use in block copolymerization. Macromolecules 35, 8265-8270 (2002). doi:  10.1021/ma020668t
[29] Vinck, M. et al. Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomedicine and Laser Surgery 23, 167-171 (2005). doi:  10.1089/pho.2005.23.167
[30] Gu, M. Advanced Optical Imaging Theory. (Berlin Heidelberg: Springer, 2000).
[31] Mueller, J. B. et al. Polymerization Kinetics in Three-Dimensional Direct Laser Writing. Advanced Materials 26, 6566-6571 (2014). doi:  10.1002/adma.201402366
[32] Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46-49 (1994). doi:  10.1038/368046a0
[33] Warner, J. et al. Design and 3D printing of hydrogel scaffolds with fractal geometries. ACS Biomaterials Science & Engineering 2, 1763-1770 (2016).
[34] Bennett, S. H. et al. Origin of fractal branching complexity in the lung (2009). at: http://www.stat.rice.edu/~riedi/UCDavisHemoglobin/fractal3.pdf
[35] Zamir, M. et al. Fractal dimensions and multifractility in vascular branching. Journal of Theoretical Biology 212, 183-190 (2001). doi:  10.1006/jtbi.2001.2367
[36] Bassett, D. S. et al. Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America 103, 19518-19523 (2006). doi:  10.1073/pnas.0606005103
[37] Nayfeh, A. H. & Pai, P. F. Linear and Nonlinear Structural Mechanics. (Hoboken: John Wiley & Sons, 2004).