[1] World Health Organization (WHO). Water sanitation and health. http://www.who.int/water_sanitation_health/en/ (2015).
[2] Ramirez-Castillo, F. Y. et al. Waterborne pathogens: detection methods and challenges. Pathogens 4, 307–334 (2015). doi:  10.3390/pathogens4020307
[3] Zhao, X. H., Lin, C. W., Wang, J. & Oh, D. H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24, 297–312 (2014). doi:  10.4014/jmb.1310.10013
[4] Law, J. W. F., Ab Mutalib, N. S., Chan, G. K. & Lee, L. H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5, 770 (2015). doi:  10.3389/fmicb.2014.00770
[5] Fournier, P. E. et al. Modern clinical microbiology: new challenges and solutions. Nat. Rev. Microbiol. 11, 574–585 (2013). doi:  10.1038/nrmicro3068
[6] Cunningham, S. A. et al. Three-hour molecular detection of Campylobacter, salmonella, yersinia, and Shigella species in feces with accuracy as high as that of culture. J. Clin. Microbiol. 48, 2929–2933 (2010). doi:  10.1128/JCM.00339-10
[7] Mendes Silva, D. & Domingues, L. On the track for an efficient detection of Escherichia coli in water: a review on PCR-based methods. Ecotoxicol. Environ. Saf. 113, 400–411 (2015). doi:  10.1016/j.ecoenv.2014.12.015
[8] Carey-Ann, B. D. & Carroll, K. C. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin. Microbiol. Rev. 26, 604–630 (2013). doi:  10.1128/CMR.00016-13
[9] Ahmed, A., Rushworth, J. V., Hirst, N. A. & Millner, P. A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 27, 631–646 (2014). doi:  10.1128/CMR.00120-13
[10] Cao, J., Feng, C., Liu, Y., Wang, S. Y. & Liu, F. Highly sensitive and rapid bacteria detection using molecular beacon–Au nanoparticles hybrid nanoprobes. Biosens. Bioelectron. 57, 133–138 (2014). doi:  10.1016/j.bios.2014.02.020
[11] Jin, B. R. et al. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens. Bioelectron. 90, 525–533 (2017). doi:  10.1016/j.bios.2016.10.029
[12] Ma, X. Y., Song, L. J., Zhou, N. X., Xia, Y. & Wang, Z. P. A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int. J. Food Microbiol. 245, 1–5 (2017). doi:  10.1016/j.ijfoodmicro.2016.12.024
[13] Verdoodt, N., Basso, C. R., Rossi, B. F. & Pedrosa, V. A. Development of a rapid and sensitive immunosensor for the detection of bacteria. Food Chem. 221, 1792–1796 (2017). doi:  10.1016/j.foodchem.2016.10.102
[14] Thiramanas, R. & Laocharoensuk, R. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria. Microchim Acta 183, 389–396 (2016). doi:  10.1007/s00604-015-1657-7
[15] Qi, P., Zhang, D., Zeng, Y. & Wan, Y. Biosynthesis of CdS nanoparticles: a fluorescent sensor for sulfate-reducing bacteria detection. Talanta 147, 142–146 (2016). doi:  10.1016/j.talanta.2015.09.046
[16] Joo, J. et al. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst 137, 3609–3612 (2012). doi:  10.1039/c2an35369e
[17] Kumar, S. et al. A facile method for fabrication of buckled PDMS silver nanorod arrays as active 3D SERS cages for bacterial sensing. Chem. Commun. 51, 12411–12414 (2015). doi:  10.1039/C5CC03604F
[18] Yang, L. L. et al. Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates. Adv. Funct. Mater. 20, 2619–2628 (2010). doi:  10.1002/adfm.201000630
[19] Madiyar, F. R. et al. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection. Nanoscale 7, 3726–3736 (2015). doi:  10.1039/C4NR07183B
[20] Wang, C. W. et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141, 6226–6238 (2016). doi:  10.1039/C6AN01105E
[21] Patel, I. S., Premasiri, W. R., Moir, D. T. & Ziegler, L. D. Barcoding bacterial cells: a SERS‐based methodology for pathogen identification. J. Raman Spectrosc. 39, 1660–1672 (2008). doi:  10.1002/jrs.2064
[22] Wigginton, K. R. & Vikesland, P. J. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst 135, 1320–1326 (2010). doi:  10.1039/b919270k
[23] McNeil, S. E. Characterization of Nanoparticles Intended for Drug Delivery. (Humana Press, New York, NY, 2011).
[24] Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 458, 1191–1195 (2009). doi:  10.1038/nature07830
[25] Liu, T. Y. et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2, 538 (2011). doi:  10.1038/ncomms1546
[26] Oloomi, S. A. A., Saboonchi, A. & Sedaghat, A. Effects of thin film thickness on emittance, reflectance and transmittance of nano scale multilayers. Int J. Phys. Sci. 5, 465–469 (2010).
[27] Tezduyar, T. E. & Sathe, S. Modelling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J. Numer. Methods Fluids 54, 855–900 (2007). doi:  10.1002/fld.1430
[28] Collin, S. Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys. 77, 126402 (2014). doi:  10.1088/0034-4885/77/12/126402
[29] Shaban, M., Hamdy, H., Shahin, F. & Ryu, S. W. Optical properties of porous anodic alumina membrane uniformly decorated with ultra-thin porous gold nanoparticles arrays. J. Nanosci. Nanotechnol. 11, 941–952 (2011). doi:  10.1166/jnn.2011.3088
[30] Im, H., Wittenberg, N. J., Lesuffleur, A., Lindquist, N. C. & Oh, S. H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688–696 (2010). doi:  10.1039/c0sc00365d
[31] Mertens, J. et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano. Lett. 13, 5033–5038 (2013). doi:  10.1021/nl4018463
[32] Arcidiacono, S., Bieri, N. R., Poulikakos, D. & Grigoropoulos, C. P. On the coalescence of gold nanoparticles. Int J. Multiph. Flow 30, 979–994 (2004). doi:  10.1016/j.ijmultiphaseflow.2004.03.006
[33] Zhang, R. Y., Hummelgård, M. & Olin, H. Single layer porous gold films grown at different temperatures. Phys. B Condens Matter 405, 4517–4522 (2010). doi:  10.1016/j.physb.2010.08.029
[34] Pérez-González, O. et al. Optical spectroscopy of conductive junctions in plasmonic cavities. Nano. Lett. 10, 3090–3095 (2010). doi:  10.1021/nl1017173
[35] Muhamadali, H. et al. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141, 5127–5136 (2016). doi:  10.1039/C6AN00883F
[36] Bodelón, G. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 15, 1203–1211 (2016). doi:  10.1038/nmat4720
[37] Matsushita, A. et al. Two-dimensional Fourier-transform Raman and near-infrared correlation spectroscopy studies of poly(methyl methacrylate) blends: 1. Immiscible blends of poly(methyl methacrylate) and atactic polystyrene. Vib. Spectrosc. 24, 171–180 (2000). doi:  10.1016/S0924-2031(00)00062-X
[38] Haiss, W., Thanh, N. T. K., Aveyard, J. & Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal. Chem. 79, 4215–4221 (2007). doi:  10.1021/ac0702084
[39] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). doi:  10.1103/PhysRevB.6.4370