[1] D'Yakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. J. Exp. Theor. Phys. Lett. 13, 467 (1971).
[2] Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
[3] Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1, 31–35 (2005). doi:  10.1038/nphys009
[4] Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005). doi:  10.1103/PhysRevLett.95.136601
[5] Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004). doi:  10.1103/PhysRevLett.93.083901
[6] Bliokh, K. Y. & Bliokh, Y. P. Conservation of angular momentum, transverse shift, and spin hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96, 073903 (2006). doi:  10.1103/PhysRevLett.96.073903
[7] Bliokh, K. Y. Geometrical optics of beams with vortices: berry phase and orbital angular momentum hall effect. Phys. Rev. Lett. 97, 043901 (2006). doi:  10.1103/PhysRevLett.97.043901
[8] Amo, A. et al. Anisotropic optical spin Hall effect in semiconductor microcavities. Phys. Rev. B 80, 165325 (2009). doi:  10.1103/PhysRevB.80.165325
[9] Maragkou, M. et al. Optical analogue of the spin Hall effect in a photonic cavity. Opt. Lett. 36, 1095 (2011). doi:  10.1364/OL.36.001095
[10] Yin, X. N., Ye, Z. L., Rho, J., Wang, Y. & Zang, X. Photonic spin hall effect at metasurfaces. Science 339, 1405–1407 (2013). doi:  10.1126/science.1231758
[11] Xianyu, H., Wu, S. T. & Lin, C. L. Dual frequency liquid crystals: a review. Liq. Cryst. 36, 717–726 (2009). doi:  10.1080/02678290902755598
[12] Kammann, E. et al. Nonlinear optical spin hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012). doi:  10.1103/PhysRevLett.109.036404
[13] Berreman, D. W. Optics in stratified and anisotropic media: 4x4-matrix formulation. J. Opt. Soc. Am. 62, 502–510 (1972). doi:  10.1364/JOSA.62.000502
[14] Schubert, M. Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys. Rev. B 53, 4265–4274 (1996). doi:  10.1103/PhysRevB.53.4265
[15] Cilibrizzi, P., Sigurdsson, H., Liew, T. C. H. & Ohadi, H. & Wilkinson, S. et al. Polariton spin whirls. Phys. Rev. B 92, 155308 (2015). doi:  10.1103/PhysRevB.92.155308
[16] Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371–375 (2010). doi:  10.1038/nphoton.2010.86
[17] Cookson, T. et al. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater. 5, 1700203 (2017). doi:  10.1002/adom.201700203
[18] Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004). doi:  10.1038/nature02969
[19] Chikkaraddy, R., NijsB, De., Benz, F., Barrow, S. J. & Scherman, O. A. Single-moleculestrong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). doi:  10.1038/nature17974
[20] Liu, X. Z. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2014). doi:  10.1038/nphoton.2014.304
[21] Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). doi:  10.1038/nmat4792
[22] Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007). doi:  10.1038/nphys676
[23] Cilibrizzi, P. et al. Half-skyrmion spin textures in polariton microcavities. Phys. Rev. B 94, 045315 (2016). doi:  10.1103/PhysRevB.94.045315
[24] Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016). doi:  10.1073/pnas.1610123114
[25] Manni, F., Léger, Y., Rubo, Y. G., André, R. & Deveaud, B. Hyperbolic spin vortices and textures in exciton-polariton condensates. Nat. Commun. 4, 2590 (2013). doi:  10.1038/ncomms3590
[26] Yeh, P. Optics of anisotropic layered media: a new 4x4 matrix algebra. Surf. Sci. 96, 41–53 (1980). doi:  10.1016/0039-6028(80)90293-9