[1] Paar, C. & Pelzl, J. Understanding Cryptography. (Springer, Berlin, Heidelberg, 2010).
[2] Ferguson, N., Schneier, B. & Kohno, T. Cryptography Engineering: Design Principles and Practical Applications. (Wiley, New York, 2010).
[3] Della, G. C. & Engheta, N. Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014). doi:  10.1038/nmat4082
[4] Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014). doi:  10.1038/lsa.2014.99
[5] Cui, T. J., Liu, S. & Li, L. L. Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016). doi:  10.1038/lsa.2016.172
[6] Cui, T. J., Liu, S. & Zhang, L. Information metamaterials and metasurfaces. J. Mater. Chem. C. 5, 3644–3668 (2017). doi:  10.1039/C7TC00548B
[7] Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi:  10.1126/science.1242818
[8] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017). doi:  10.1038/s41467-017-00164-9
[9] Chen, J. W. et al. Tungsten disulfide–gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano. Lett. 18, 1344–1350 (2018). doi:  10.1021/acs.nanolett.7b05033
[10] Moccia, M. et al. Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design. Adv. Opt. Mater. 5, 1700455 (2017). doi:  10.1002/adom.201700455
[11] Wu, H. T. et al. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4, 1700098 (2017). doi:  10.1002/advs.201700098
[12] Gibbs, H. M. Optical Bistability, Controling Light with Light. 133 (Academic, Orlando, 1985).
[13] Rosanov, N. N. Spatial Hysteresis and Optical Patterns. (Springer-Verlag, Berlin, Heidelberg, 2002).
[14] Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photonics 4, 182–187 (2010). doi:  10.1038/nphoton.2009.268
[15] Li, Z. Y. & Meng, Z. M. Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices. J. Mater. Chem. C. 2, 783–800 (2014). doi:  10.1039/C3TC31914H
[16] Ginzburg, P., Krasavin, A. V., Wurtz, G. A. & Zayats, A. V. Non-perturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2, 8–13 (2015). doi:  10.1021/ph500362y
[17] Krasavin, A. V., Ginzburg, P., Wurtz, G. A. & Zayats, A. V. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun. 7, 11497 (2016). doi:  10.1038/ncomms11497
[18] Chen, J. S. et al. Evidence of high-order nonlinearities in supercontinuum white-light generation from a gold nanofilm. ACS Photonics 5, 1927–1932 (2018). doi:  10.1021/acsphotonics.7b01125
[19] Palpant, B. Third-order nonlinear optical response of metal nanoparticles. in Non-Linear Optical Properties of Matter (eds Papadopoulos, M. G., Sadlej, A. J., Leszczynski, J.) 461–508 (Springer, Dordrecht, 2006).
[20] Mikhailov, S. A. & Ziegler, K. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys. Condens. Matter 20, 384204 (2008). doi:  10.1088/0953-8984/20/38/384204
[21] Peres, N. M. R., Bludov, Y. V., Santos, J. E., Jauho, A. P. & Vasilevskiy, M. I. Optical bistability of graphene in the terahertz range. Phys. Rev. B 90, 125425 (2014). doi:  10.1103/PhysRevB.90.125425
[22] Noskov, R. E., Belov, P. A. & Kivshar, Y. S. Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays. Phys. Rev. Lett. 108, 093901 (2012). doi:  10.1103/PhysRevLett.108.093901
[23] Balanis, C. A. Antenna Theory: Analysis and Design. (Wiley-Interscience, New York, 2005).
[24] Shegai, T. et al. A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 481 (2011). doi:  10.1038/ncomms1490
[25] Gan, X. T. et al. Graphene-controlled fiber bragg grating and enabled optical bistability. Opt. Lett. 41, 603–606 (2016). doi:  10.1364/OL.41.000603
[26] Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 6, 554–559 (2012). doi:  10.1038/nphoton.2012.147
[27] Zhang, K., Huang, Y., Miroshnichenko, A. E. & Gao, L. Tunable optical bistability and tristability in nonlinear graphene-wrapped nanospheres. J. Phys. Chem. C. 121, 11804–11810 (2017). doi:  10.1021/acs.jpcc.7b01519
[28] Feurer, T., Vaughan, J. C. & Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374–377 (2003). doi:  10.1126/science.1078726
[29] Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010). doi:  10.1038/nature09110
[30] Koehler, J. R., Noskov, R. E., Sukhorukov, A. A., Novoa, D. & Russell, PstJ. Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light. Phys. Rev. A. 96, 063822 (2017). doi:  10.1103/PhysRevA.96.063822
[31] Albrecht, G., Ubl, M., Kaiser, S., Giessen, H. & Hentschel, M. Comprehensive study of plasmonic materials in the visible and near-infrared: linear, refractory, and nonlinear optical properties. ACS Photonics 5, 1058–1067 (2018). doi:  10.1021/acsphotonics.7b01346
[32] Drachev, V. P., Buin, A. K., Nakotte, H. & Shalaev, V. M. Size dependent χ(3) for conduction electrons in Ag nanoparticles. Nano. Lett. 4, 1535–1539 (2004). doi:  10.1021/nl049438d
[33] Neuendorf, R., Quinten, M. & Kreibig, U. Optical bistability of small heterogeneous clusters. J. Chem. Phys. 104, 6348–6354 (1996). doi:  10.1063/1.471296
[34] Argyropoulos, C., Chen, P. Y., Monticone, F., D'Aguanno, G. & Alù, A. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 108, 263905 (2012). doi:  10.1103/PhysRevLett.108.263905
[35] Yu, W. J., Ma, P. J., Sun, H., Gao, L. & Noskov, R. E. Optical tristability and ultrafast fano switching in nonlinear magnetoplasmonic nanoparticles. Phys. Rev. B 97, 075436 (2018). doi:  10.1103/PhysRevB.97.075436
[36] Makarov, S. V. et al. Light-induced tuning and reconfiguration of nanophotonic structures. Laser Photon Rev. 11, 1700108 (2017). doi:  10.1002/lpor.201700108
[37] Smirnova, D. A., Noskov, R. E., Smirnov, L. A. & Kivshar, Y. S. Dissipative plasmon solitons in graphene nanodisk arrays. Phys. Rev. B 91, 075409 (2015). doi:  10.1103/PhysRevB.91.075409
[38] Noskov, R. E. & Zharov, A. A. Optical bistability of planar metal/dielectric nonlinear nanostructures. Opto-Electron. Rev. 14, 217–223 (2006). doi:  10.2478/s11772-006-0029-6
[39] Husakou, A. & Herrmann, J. Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant. Phys. Rev. Lett. 99, 127402 (2007). doi:  10.1103/PhysRevLett.99.127402
[40] Yanik, M. F., Fan, S. H., Soljačić, M. & Joannopoulos, J. D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506–2508 (2003). doi:  10.1364/OL.28.002506
[41] Amo, A. et al. Exciton–polariton spin switches. Nat. Photonics 4, 361–366 (2010). doi:  10.1038/nphoton.2010.79
[42] Chen, R. et al. Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat. Commun. 5, 4325 (2014). doi:  10.1038/ncomms5325
[43] Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018). doi:  10.1038/s41467-017-02434-y
[44] Whitham, G. B. Linear and Nonlinear Waves. (John Wiley & Sons, Inc, Hoboken, NJ, USA, 1999).
[45] Gao, L. & Li, Z. Y. Self-consistent formalism for a strongly nonlinear composite: comparison with variational approach. Phys. Lett. A 219, 324–328 (1996). doi:  10.1016/0375-9601(96)00468-9
[46] Thongrattanasiri, S., Manjavacas, A., García & de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012). doi:  10.1021/nn204780e
[47] Olivares, I., Rojas, R. & Claro, F. Surface modes of a pair of unequal spheres. Phys. Rev. B 35, 2453–2455 (1987). doi:  10.1103/PhysRevB.35.2453
[48] Chandler-Horowitz, D. & Amirtharaj, P. M. High-accuracy, midinfrared (450 cm−1 ≤ ω ≤ 4000 cm−1) refractive index values of silicon. J. Appl. Phys. 97, 123526 (2005). doi:  10.1063/1.1923612
[49] Connolly, J., diBenedetto, B. & Donadio, R. Specifications of raytran material. Proc. SPIE 0181, 141–144 (1979). doi:  10.1117/12.957359
[50] Christensen, T., Jauho, A. P., Wubs, M. & Mortensen, N. A. Localized plasmons in graphene-coated nanospheres. Phys. Rev. B 91, 125414 (2015). doi:  10.1103/PhysRevB.91.125414