[1] Yang, Y. L. et al. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed. Opt. Express 2, 2160–2174 (2011). doi:  10.1364/BOE.2.002160
[2] Mittal, R. et al. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg. Med. 45, 496–502 (2013).
[3] Uckermann, O. et al. Label-free delineation of brain tumors by coherent anti-stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS ONE 9, e107115 (2014). doi:  10.1371/journal.pone.0107115
[4] Hering, K. et al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113–124 (2008). doi:  10.1007/s00216-007-1667-3
[5] Kim, H., Bryant, G. W. & Stranick, S. J. Superresolution four-wave mixing microscopy. Opt. Express 20, 6042–6051 (2012). doi:  10.1364/OE.20.006042
[6] Wang, Y. et al. Wide-field, surface-sensitive four-wave mixing microscopy of nanostructures. Appl. Opt. 51, 3305–3312 (2012). doi:  10.1364/AO.51.003305
[7] Liu, X. J., Wang, Y. & Potma, E. O. Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons. Opt. Lett. 36, 2348–2350 (2011). doi:  10.1364/OL.36.002348
[8] Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999). doi:  10.1103/PhysRevLett.82.4142
[9] Evans, C. L. & Xie, X. S. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev. Anal. Chem. 1, 883–909 (2008). doi:  10.1146/annurev.anchem.1.031207.112754
[10] Camp, C. H. Jr et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 8, 627–634 (2014). doi:  10.1038/nphoton.2014.145
[11] Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photonics 8, 650–656 (2014). doi:  10.1038/nphoton.2014.143
[12] Liu, W. & Niu, H. B. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion. Phys. Rev. A 83, 023830 (2011). doi:  10.1103/PhysRevA.83.023830
[13] Kawata S., Ichimura T., Hayazawa N., Hashimoto M., Inouye Y. Tip-enhanced near-field CARS microscopy for molecular nano-imaging. Proceedings of SPIE 5700, Multiphoton Microscopy in the Biomedical Sciences V. 5700: 52–59 (SPIE, San Jose, 2005).
[14] Cheng, J. X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015). doi:  10.1126/science.aaa8870
[15] Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). doi:  10.1126/science.1165758
[16] Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003). doi:  10.1038/nbt895
[17] Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350–352 (1982). doi:  10.1364/OL.7.000350
[18] Houston, W. V. A compound interferometer for fine structure work. Phys. Rev. 29, 478–484 (1927). doi:  10.1103/PhysRev.29.478
[19] Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). doi:  10.1126/science.1137395
[20] Allen, K. W. et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express 23, 24484–24496 (2015). doi:  10.1364/OE.23.024484
[21] Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134, 3623–3626 (2012). doi:  10.1021/ja210081h
[22] Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 6, 845–851 (2012). doi:  10.1038/nphoton.2012.263
[23] Fu, D., Holtom, G., Freudiger, C., Zhang, X. & Xie, X. S. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117, 4634–4640 (2013). doi:  10.1021/jp308938t
[24] Paxinos G., Franklin K. B. J. The Mouse Brain in Stereotaxic Coordinates. 2nd edn. (Academic Press, San Diego, 2001).
[25] Ji, M. B. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013). doi:  10.1126/scitranslmed.3005954
[26] Fu, D. et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136, 8820–8828 (2014). doi:  10.1021/ja504199s
[27] Heinrich, C. et al. Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy. Opt. Express 16, 2699–2708 (2008). doi:  10.1364/OE.16.002699
[28] Di Napoli, C. et al. Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral CARS microscopy in living human adipose-derived stem cells. Anal. Chem. 88, 3677–3685 (2016). doi:  10.1021/acs.analchem.5b04468
[29] Slipchenko, M. N., Le, T. T., Chen, H. T. & Cheng, J. X. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. J. Phys. Chem. B 113, 7681–7686 (2009). doi:  10.1021/jp902231y
[30] Rinia, H. A., Burger, K. N. J., Bonn, M. & Müller, M. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys. J. 95, 4908–4914 (2008). doi:  10.1529/biophysj.108.137737
[31] Wu, H. W. et al. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl Acad. Sci. USA 108, 3809–3814 (2011). doi:  10.1073/pnas.1009043108
[32] Krafft, C., Neudert, L., Simat, T. & Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 1529–1535 (2005). doi:  10.1016/j.saa.2004.11.017
[33] Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017). doi:  10.1038/nature22051
[34] Albrecht, A. C. & Hutley, M. C. On the dependence of vibrational Raman intensity on the wavelength of incident light. J. Chem. Phys. 55, 4438–4443 (1971). doi:  10.1063/1.1676771
[35] Asher, S. A. UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annu. Rev. Phys. Chem. 39, 537–588 (1988). doi:  10.1146/annurev.pc.39.100188.002541
[36] Held P. Quantitation of Peptides and Amino Acids with a Synergy™ HT Using UV Fluorescence (B.-T. Instruments, Winooski, 2003).
[37] Jin, C., Nadakuditi, R. R., Michielssen, E. & Rand, S. C. Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media. J. Opt. Soc. Am. A 30, 1592–1602 (2013). doi:  10.1364/JOSAA.30.001592
[38] Han, Y. B., Li, M. H., Qiu, F. W., Zhang, M. & Zhang, Y. H. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 8, 1307 (2017). doi:  10.1038/s41467-017-01503-6
[39] Pan, D. et al. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat. Commun. 5, 5573 (2014). doi:  10.1038/ncomms6573
[40] Matsuzaki, F., Shirane, M., Matsumoto, M. & Nakayama, K. I. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol. Biol. Cell 22, 4602–4620 (2011). doi:  10.1091/mbc.e11-01-0068