[1] Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012). doi:  10.1038/nphoton.2012.88
[2] Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011). doi:  10.1364/OE.19.000247
[3] Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011). doi:  10.1364/OE.19.018871
[4] Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi:  10.1038/ncomms2024
[5] Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012). doi:  10.1364/OE.20.010583
[6] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi:  10.1103/PhysRevLett.109.203901
[7] Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260–270 (2013). doi:  10.1364/BOE.4.000260
[8] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529–535 (2015). doi:  10.1038/nphoton.2015.112
[9] Morales-Delgado, E. E., Psaltis, D. & Moser, C. Two-photon imaging through a multimode fiber. Opt. Express 23, 32158–32170 (2015). doi:  10.1364/OE.23.032158
[10] Plöschner, M. et al. Multimode fibre: Light-sheet microscopy at the tip of a needle. Sci. Rep. 5, 18050 (2015). doi:  10.1038/srep18050
[11] Leite, I. T. et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 12, 33–39 (2018). doi:  10.1038/s41566-017-0053-8
[12] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007). doi:  10.1364/OL.32.002309
[13] Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008). doi:  10.1103/PhysRevLett.101.120601
[14] Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010). doi:  10.1038/ncomms1078
[15] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). doi:  10.1103/PhysRevLett.104.100601
[16] Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012). doi:  10.1364/OE.20.001733
[17] Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express 22, 17999–18009 (2014). doi:  10.1364/OE.22.017999
[18] Akbulut, D., Huisman, T. J., Van Putten, E. G., Vos, W. L. & Mosk, A. P. Focusing light through random photonic media by binary amplitude modulation. Opt. Express 19, 4017–4029 (2011). doi:  10.1364/OE.19.004017
[19] Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B. & Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express 21, 12881–12887 (2013). doi:  10.1364/OE.21.012881
[20] Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25, 29874–29884 (2017). doi:  10.1364/OE.25.029874
[21] Ohayon, S., Caravaca-Aguirre, A., Piestun, R. & DiCarlo, J. J. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express 9, 1492–1509 (2018). doi:  10.1364/BOE.9.001492
[22] Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017). doi:  10.1038/nrn.2017.15
[23] Sharp, A. A., Ortega, A. M., Restrepo, D., Curran-Everett, D. & Gall, K. In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. Ieee. Trans. Biomed. Eng. 56, 45–53 (2009). doi:  10.1109/TBME.2008.2003261
[24] Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015). doi:  10.1021/cn500256e
[25] Chandrasekaran S. N., Ligtenberg H., Steenbergen W., Vellekoop I. M. Using digital micromirror devices for focusing light through turbid media. In Proc. Emerging Digital Micromirror Device Based Systems and Applications VI 897905(SPIE: San Francisco, California, USA, 2014).
[26] Attardo, A., Fitzgerald, J. E. & Schnitzer, M. J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523, 592–596 (2015). doi:  10.1038/nature14467
[27] Sato, M., Kawano, M., Yanagawa, Y. & Hayashi, Y. In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiol. Learn. Mem. 135, 146–151 (2016). doi:  10.1016/j.nlm.2016.07.006
[28] Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979). doi:  10.1364/AO.18.003661