[1] Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 18, 42-45 (2009). https://www.researchgate.net/publication/242576202_Persistent_Luminescence_Beats_the_Afterglow_400_Years_of_Persistent_Luminescence
[2] Pan, Z. W., Lu, Y. Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58-63 (2001). doi:  10.1038/nmat3173
[3] Jia, W. Y., Yuan, H. B., Lu, L. Z., Liu, H. M. & Yen, W. M. Phosphorescent dynamics in SrAl2O4: Eu2+, Dy3+ single crystal fibers. J. Lumin. 76-77, 424-428 (1998).
[4] Aitasalo, T. et al. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171, 114-122 (2003). doi:  10.1016/S0022-4596(02)00194-9
[5] Wang, X. J., Jia, D. D. & Yen, W. M. Mn2+ activated green, yellow, and red long persistent phosphors. J. Lumin. 102-103, 34-37 (2003). http://www.sciencedirect.com/science/article/pii/S0022231302005410
[6] Clabau, F. et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+. Chem. Mater. 17, 3904-3912 (2005). doi:  10.1021/cm050763r
[7] Aitasalo, T., Hölsä, J., Jungner, H., Lastusaari, M. & Niittykoski, J. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+, R3+. J. Phys. Chem. B 110, 4589-4598 (2006). doi:  10.1021/jp057185m
[8] Van den Eeckhout, K., Smet, P. F. & Poelman, D. Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536-2566 (2010). doi:  10.3390/ma3042536
[9] Rodríguez Burbano, D. C., Sharma, S. K., Dorenbos, P., Viana, B. & Capobianco, J. A. Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 3, 551-557 (2015). doi:  10.1002/adom.201400562
[10] Norrbo, I. et al. Lanthanide and heavy metal free long white persistent luminescence from Ti doped Li-hackmanite: a versatile, low-cost material. Adv. Funct. Mater. 27, 1606547 (2017). doi:  10.1002/adfm.201606547
[11] Trojan-Piegza, J., Niittykoski, J., Hölsä, J. & Zych, E. Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-Doped and Tb3+, Ca2+-codoped Lu2O3 materials. Chem. Mater. 20, 2252-2261 (2008). doi:  10.1021/cm703060c
[12] Zhuang, Y. X., Wang, L., Lv, Y., Zhou, T. L. & Xie, R. J. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018). doi:  10.1002/adfm.201705769
[13] Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670-2673 (1996). doi:  10.1149/1.1837067
[14] Yamamoto, H. & Matsuzawa, T. Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+. J. Lumin. 72-74, 287-289 (1997). http://www.researchgate.net/publication/288910555_Mechanism_of_long_phosphorescence_of_SrAl2O4_Eu2_Dy3_and_CaAl2O4_Eu2_Nd3
[15] Wang, X. X., Zhang, Z. T., Tang, Z. L. & Lin, Y. H. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor. Mater. Chem. Phys. 80, 1-5 (2003). doi:  10.1016/S0254-0584(02)00097-4
[16] le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266-9271 (2007). doi:  10.1073/pnas.0702427104
[17] Jia, D., Lewis, L. A. & Wang, X. J. Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission. Electrochem. Solid-State Lett. 13, J32-J34 (2010). doi:  10.1149/1.3294520
[18] Yan, W. et al. Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor. Opt. Express 18, 20215-20221 (2010). doi:  10.1364/OE.18.020215
[19] Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810-11815 (2011). doi:  10.1021/ja204504w
[20] Abdukayum, A., Chen, J. T., Zhao, Q. & Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125-14133 (2013). doi:  10.1021/ja404243v
[21] Allix, M. et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater. 25, 1600-1606 (2013). doi:  10.1021/cm304101n
[22] Liu, F., Liang, Y. J. & Pan, Z. W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+, Yb3+, Er3+ phosphor. Phys. Rev. Lett. 113, 177401 (2014). doi:  10.1103/PhysRevLett.113.177401
[23] Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418-426 (2014). doi:  10.1038/nmat3908
[24] Li, Y. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 7, e180 (2015). doi:  10.1038/am.2015.38
[25] Li, Z. J. et al. Direct aqueous-phase synthesis of sub-10 nm "Luminous Pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304-5307 (2015). doi:  10.1021/jacs.5b00872
[26] Li, Z. J. et al. In vivo repeatedly charging near-infrared-emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites. Adv. Sci. 2, 1500001 (2015). doi:  10.1002/advs.201500001
[27] Li, Y., Gecevicius, M. & Qiu, J. R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45, 2090-2136 (2016). doi:  10.1039/C5CS00582E
[28] Valero, A. et al. Effect of germicidal UVC light on fungi isolated from grapes and raisins. Lett. Appl. Microbiol. 45, 238-243 (2007). doi:  10.1111/j.1472-765X.2007.02175.x
[29] Qin, X., Liu, X. W., Huang, W., Bettinelli, M. & Liu, X. G. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488-4527 (2017). doi:  10.1021/acs.chemrev.6b00691
[30] Yu, N. Y., Liu, F., Li, X. F. & Pan, Z. W. Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 95, 231110 (2009). doi:  10.1063/1.3272672
[31] Tanner, P. A. et al. 4f−5d transitions of Pr3+ in elpasolite lattices. Phys. Rev. B 67, 115102 (2003). doi:  10.1103/PhysRevB.67.115102
[32] Pawlik, T. & Spaeth, J. M. Investigation of the X-ray storage phosphors Cs2NaYF6:Pr3+ or Ce3+. J. Appl. Phys. 82, 4236-4240 (1997). doi:  10.1063/1.366229
[33] Duan, C. K., Tanner, P. A., Makhov, V. & Khaidukov, N. Emission and excitation spectra of Ce3+ and Pr3+ ions in hexafluoroelpasolite lattices. J. Phys. Chem. A 115, 8870-8876 (2011). doi:  10.1021/jp203938x
[34] Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS). (Los Alamos National Laboratory, Los Alamos, 2000).
[35] Yang, H. & Kim, Y. S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. J. Lumin 128, 1570-1576 (2008). doi:  10.1016/j.jlumin.2008.03.003
[36] Rezende, M. V. D., Montes, P. J. R., Andrade, A. B., Macedo, Z. S. & Valerio, M. E. G. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. Phys. Chem. Chem. Phys. 18, 17646-17654 (2016). doi:  10.1039/C6CP01183G
[37] Verwey, J. W. M. & Blasse, G. Ultraviolet luminescence of Pr3+ in a glass. J. Solid State Chem. 80, 152-155 (1989). doi:  10.1016/0022-4596(89)90043-1
[38] Johnson, T. A., Rehak, E. A., Sahu, S. P., Ladner, D. A. & Cates, E. L. Bacteria inactivation via X-ray-induced UVC radioluminescence: toward in situ biofouling prevention in membrane modules. Environ. Sci. Technol. 50, 11912-11921 (2016). doi:  10.1021/acs.est.6b04239
[39] Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537-541 (2005). doi:  10.1107/S0909049505012719
[40] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996). doi:  10.1103/PhysRevB.54.11169
[41] Morgan, B. J. & Watson, G. W. Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C 114, 2321-2328 (2010). doi:  10.1021/jp9088047
[42] Park, S. G., Magyari Köpe, B. & Nishi, Y. Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys. Rev. B 82, 115109 (2010). doi:  10.1103/PhysRevB.82.115109
[43] Hu, Z. P. & Metiu, H. Choice of U for DFT+U calculations for titanium oxides. J. Phys. Chem. C. 115, 5841-5845 (2011). doi:  10.1021/jp111350u
[44] Guo, S. Q., Wang, Y. Y., Wang, C., Tang, Z. L. & Zhang, J. Y. Large spin-orbit splitting in the conduction band of halogen (F, Cl, Br, and I) doped monolayer WS2 with spin-orbit coupling. Phys. Rev. B 96, 245305 (2017). doi:  10.1103/PhysRevB.96.245305