[1] Pawley, J. Handbook of Biological Confocal Microscopy 3rd edn (Springer Science+Business Media LLC, New York, NY, 2006).
[2] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). doi:  10.1364/OL.19.000780
[3] Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). doi:  10.1126/science.1127344
[4] Rust, M. J., Bates, M. & Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006). doi:  10.1038/nmeth929
[5] Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002). doi:  10.1126/science.1068206
[6] Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1988).
[7] Kerwin, J. et al. 3 dimensional modelling of early human brain development using optical projection tomography. BMC Neurosci. 5, 27 (2004). doi:  10.1186/1471-2202-5-27
[8] Alanentalo, T. et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Methods 4, 31–33 (2007). doi:  10.1038/nmeth985
[9] Walls, J. R., Coultas, L., Rossant, J. & Henkelman, R. M. Three-dimensional analysis of vascular development in the mouse embryo. PLoS ONE 3, e2853 (2008). doi:  10.1371/journal.pone.0002853
[10] Lee, K. et al. Visualizing plant development and gene expression in three dimensions using optical projection tomography. Plant Cell 18, 2145–2156 (2006). doi:  10.1105/tpc.106.043042
[11] Boot, M. J. et al. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nat. Methods 5, 609–612 (2008). doi:  10.1038/nmeth.1219
[12] Arranz, A. et al. In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. Sci. Rep. 4, 7325 (2014). doi:  10.1038/srep07325
[13] Chen, L. L. et al. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography. Biomed. Opt. Express 6, 1253–1261 (2015). doi:  10.1364/BOE.6.001253
[14] Sharpe, J. Optical projection tomography as a new tool for studying embryo anatomy. J. Anat. 202, 175–181 (2003). doi:  10.1046/j.1469-7580.2003.00155.x
[15] Kumar, V., Chyou, S., Stein, J. V. & Lu, T. T. Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Front. Immun. 3, 282 (2012).
[16] Reynaud, E. G., Peychl, J., Huisken, J. & Tomancak, P. Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12, 30–34 (2015). doi:  10.1038/nmeth.3222
[17] Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993). doi:  10.1111/j.1365-2818.1993.tb03346.x
[18] Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004). doi:  10.1126/science.1100035
[19] Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007). doi:  10.1038/nmeth1036
[20] Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008). doi:  10.1126/science.1162493
[21] Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010). doi:  10.1038/nmeth.1476
[22] Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M. & Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011). doi:  10.1038/nmeth.1652
[23] Sarov, M. et al. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 5, e12068 (2016). doi:  10.7554/eLife.12068
[24] Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298 (2009). doi:  10.1126/science.1178577
[25] Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013). doi:  10.1038/nmeth.2434
[26] Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113–119 (2015). doi:  10.1038/nphoton.2014.323
[27] Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014). doi:  10.1038/nprot.2014.123
[28] Voie, A. H. Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy. Heart Res. 171, 119–128 (2002). doi:  10.1016/S0378-5955(02)00493-8
[29] Brede, C. et al. Mapping immune processes in intact tissues at cellular resolution. J. Clin. Invest. 122, 4439–4446 (2012). doi:  10.1172/JCI65100
[30] Abe, J. et al. Light sheet fluorescence microscopy for in situ cell interaction analysis in mouse lymph nodes. J. Immun. Methods 431, 1–10 (2016). doi:  10.1016/j.jim.2016.01.015
[31] Masson, A. et al. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM. Sci. Rep. 5, 16898 (2015). doi:  10.1038/srep16898
[32] Huisken, J. & Stainier, D. Y. R. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608–2610 (2007). doi:  10.1364/OL.32.002608
[33] Swoger, J., Verveer, P., Greger, K., Huisken, J. & Stelzer, E. H. K. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029–8042 (2007). doi:  10.1364/OE.15.008029
[34] Santi, P. A. et al. Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques 46, 287–294 (2009). doi:  10.2144/000113087
[35] Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012). doi:  10.1038/nmeth.2062
[36] Fahrbach, F. O. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2012). doi:  10.1038/ncomms1646
[37] Fahrbach, F. O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010). doi:  10.1038/nphoton.2010.204
[38] Vettenburg, T. et al. Light-sheet microscopy using an Airy beam. Nat. Methods 11, 541–544 (2014). doi:  10.1038/nmeth.2922
[39] LaVision's Ultramicroscope, see the web page https://www.lavisionbiotec.com/products/UltraMicroscope/flim-device.html.
[40] Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9, 730–733 (2012). doi:  10.1038/nmeth.2064
[41] Luxendo's MuVi-SPIM, see the web page http://luxendo.eu/.
[42] Schmid, B. et al. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013). doi:  10.1038/ncomms3207
[43] Vinegoni, C. et al. Normalized Born ratio for fluorescence optical projection tomography. Opt. Lett. 34, 319–321 (2009). doi:  10.1364/OL.34.000319
[44] Arranz, A. et al. Helical optical projection tomography. Opt. Express 21, 25912–25925 (2013). doi:  10.1364/OE.21.025912
[45] Gualda, E. J. et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat. Methods 10, 599–600 (2013). doi:  10.1038/nmeth.2508
[46] Mayer, J. et al. OPTiSPIM: integrating optical projection tomography in light sheet microscopy extends specimen characterization to nonfluorescent contrasts. Opt. Lett. 39, 1053–1066 (2014). doi:  10.1364/OL.39.001053
[47] Bassi, A., Schmid, B. & Huisken, J. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. Development 142, 1016–1020 (2015). doi:  10.1242/dev.116970
[48] Pham, T. A. et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express 26, 2749–2763 (2018). doi:  10.1364/OE.26.002749
[49] Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge University Press, Cambridge, UK, 1999).
[50] Brown, C. S., Burns, D. H., Spelman, F. A. & Nelson, A. C. Computed tomography from optical projections for three-dimensional reconstruction of thick objects. Appl. Opt. 31, 6247–6254 (1992). doi:  10.1364/AO.31.006247