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Abstract: Speckle patterns generated by the intermodal interference of multimode fibers enable 
accurate broadband wavelength measurements. However, the measurement speed is limited by 
the frame rate of the camera that captures the patterns. We propose a compact and cost-effective 
ultrafast wavemeter based on multimode and multicore fibers, which employs spectral–spatial–
temporal mapping. The speckle patterns generated by multimode fibers enable spectral-to-
spatial mapping, which is then sampled by a multicore fiber into a pulse sequence to implement 
spatial-to-temporal mapping. A high-speed single-pixel photodetector is employed to capture 
the pulse sequence, which is analysed using a multilayer perceptron to estimate the wavelength. 
The feasibility of the proposed wavelength estimation method is experimentally verified, 
achieving a measurement rate of 100 MHz with a resolution of 2.7 pm in a 1 nm operation 
bandwidth. 

1. Introduction

Accurate high-speed measurements of wavelength are fundamental to environmental 
monitoring [1], biomedical analysis [2], and material characterization [3]. Conventional 
spectrometers disperse light to different spatial locations using dispersion elements such as 
gratings. However, their resolutions are limited by their spatial size [4]. Recent studies have 
shown that a disordered scattering medium such as a multimode fiber (MMF) can generate a 
wavelength-dependent speckle pattern, which is used to reconstruct the spectrum of incident 
light [5-6]. MMF-based spectrometers can provide a high spectral resolution and broad 
operation bandwidth in a compact structure. 

One of the current objectives of spectroscopy research is to improve the measurement speed 
for fast and non-repetitive events such as chemical reactions, ultrashort pulses, laser mode-
locking dynamics, and spatiotemporal solitons. However, most speckle-based spectrometers 
use imaging sensors based on charge-coupled devices (CCD) or complementary metal–oxide–
semiconductor (CMOS) technology to record speckle patterns, which are widely known for 
their slow measurement rates, usually between 10 Hz and 10 kHz. Therefore, the measurement 
speeds of current speckle spectrometers are constrained by cameras, which limits their 
applications. Although ultrafast cameras can achieve faster measurement rates, they are 
expensive and significantly increase the system costs. Another solution is to replace the 
imaging sensor with spatial-to-temporal mapping technology, but it also requires complex and 
costly optical systems [7]. 

A transmission matrix is typically used to reconstruct a spectrum [8-9]. The spectral 
resolution is determined by the minimal change in wavelength that generates an uncorrelated 
speckle pattern. Many reconstruction algorithms have been proposed to improve the resolution 
and operating bandwidth. In addition, multivariate analysis methods such as principal 
component analysis have been used to overcome the resolution limitation of correlations 

ACCEPTED ARTICLE PREVIEW 



between speckle patterns [10]. However, principal component analysis only allows for a limited 
operating range and low processing speed [11-12]. Alternatively, compressed sensing has been 
applied to increase the operating bandwidth when reconstructing sparse spectra [13] and to 
increase the measurement rate without reducing resolution. However, compressed sensing is 
not suitable for analyzing data containing environmental noise. Recently, deep learning has 
attracted considerable attention. A deep-learning system can automatically extract features 
from data at multiple levels of abstraction, allowing the direct learning of complex functions 
that map the spectrum to the speckle pattern. High-accuracy estimation can be achieved over a 
broad operating range with robustness to instrumental and environmental noise [14-15]. 
Combining convolutional neural networks and speckle patterns obtained using cameras enables 
highly accurate wavelength measurements.  

Fig. 1. Evolution of light pulse in MMF and MCF. The input pulse is mapped into a speckle 
pattern through the MMF. Then, the MCF samples the output pattern into a pulse sequence. The 
seven cores of the MCF are extended in different lengths to avoid overlapping. 

This paper presents and validates a pioneering approach to overcome this speed limit. We 
propose a low-cost, high-speed wavemeter based on an MMF and multicore fiber (MCF) 
structure. MCFs are commonly used in space-division multiplexing systems. Owing to the 
similarity in cladding diameters between MCF and MMF, they have been fused for spatial 
dimension multiplexing [16]. The MMF generates a wavelength-dependent speckle pattern, 
which is spectral-to-spatial mapping. We then used a seven-core MCF to sample the speckle 
pattern, replacing the common camera to avoid frame rate limitations, thereby providing 
spatial-to-temporal mapping, as illustrated in Fig. 1. The light pulses in the MCF are then 
separated by a set of delay lines and detected using a single photodetector. Our frequency-
space-time mapping-based wavemeter has an all-fiber structure that considerably increases the 
measurement speed at a low cost. A multilayer perceptron (MLP) is employed to estimate the 
wavelength from the pulse sequences of the speckle patterns. Sampling the speckle patterns of 
the MMF using the MCF reduces the amount of input data efficiently, allowing for a simple 
network structure to perform the wavemeter function, thereby reducing system complexity. The 
feasibility and effectiveness of the proposed high-speed wavelength-estimation method are 
experimentally verified. We demonstrate a wavemeter with a 100 MHz measurement rate and 
2.7 pm precision. 

The remainder of this paper is organized as follows: Section 2 describes the experimental 
apparatus and introduce the principles of data acquisition and MLP. Experimental results and 
analyses are presented in Section 3. The influence of the number and position of MCF cores on 
accuracy is also discussed in this section. Finally, the conclusions are presented in Section 4. 

2. Materials and methods

ACCEPTED ARTICLE PREVIEW 



2.1 Experimental setup 
The experimental setup for the proposed MMF–MCF wavemeter is shown in Fig. 2. A tunable 
laser (CoBrite ID Photonics DX4) was used to generate the monochromatic light. An in-
phase/quadrature (I/Q) modulator was employed to change the wavelength of incident light and 
convert it into pulsed light. Single-sideband modulation (SSB) shifts the frequency and controls 
the input wavelength. The I/Q modulator consists of two Mach–Zehnder intensity modulators 
with a π/2 phase shifter between the two arms. When the two arms of the I/Q modulator are 

loaded with the sine and cosine signals of frequency mf , the light frequency shifts to 0 mf f  , 

where 0f  is the frequency of the incident light (detailed principles are provided in the 
supplemental document) [17]. The I/Q modulator was controlled using an arbitrary waveform 
generator (Keysight M8196A), which generated high-speed light pulses with controlled 
wavelength variation signals. The detailed parameter settings are described in Section 2.2. The 
output light was amplified using an erbium-doped optical fiber amplifier, which was used to 
compensate for the loss in the I/Q modulator. These devices are used to rapidly adjust the 
wavelength of the incident light to simulate high-speed measurement scenarios, which are not 
required in real measurement systems. We employed a fiber polariser (FP) to maintain a 
consistent input polarization state into the MMF to mitigate slight fluctuations in the laser and 
fibers. The polarization state variations before the FP only affect the MMF output speckle's 
total power without altering the peak power ratios of the pulse sequences. A fiber polarization 
controller (FPC) cooperated with the FP to minimize power loss. 

Subsequently, a single-mode fiber (SMF) was used to connect the incident and 
measurement parts. The SMF is fused to a step-index MMF (10 m length, 105/125 µm 
core/cladding diameter, numerical aperture of 0.22). The other end of the MMF was fused to a 
seven-core MCF using a mild electrical arc discharge technique with center alignment owing 
to the slight difference in their cladding diameters. The MCF consists of 7 single-mode fiber 
cores with a cladding diameter of 150 µm and core pitch of 42 µm. The delay-line set contained 
a fan-out demultiplexer with seven short fibers of different lengths and an 8 × 1 optical 
combiner that temporally separated the seven pulses of the MCF into a pulse sequence. Light 
pulses were detected using a single photodetector with a bandwidth of 10 GHz and collected 
using a digital storage oscilloscope with a sampling rate of 20 GSa/s. 
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Fig. 2. Schematic of the experimental setup (AWG, arbitrary waveform generator; DSO, digital 
storage oscilloscope; EDFA, erbium-doped optical fiber amplifier; FPC, fiber polarization 
controller; FP, fiber polarizer; PD, photodiode; SMF, single-mode fiber). 

2.2 Data acquisition 

The critical parameters for data acquisition are listed in Table 1. The input pulses and 
corresponding pulse sequences are shown in Figs. 3(a) and 3(b), respectively, where the pulse 
colours represent the different wavelengths. The pulse interval was set to 10 ns, and the pulse 
width was 0.5 ns. Therefore, the wavelength measurement rate was 100 MHz, determined by 
the input pulse's repetition period and could be further enhanced if needed. The SSB technique 
was used to sweep the frequency of each pulse signal. The wavelength difference between 
adjacent light pulses was approximately 0.8 pm (100 MHz in frequency). After passing through 
the MMF–MCF and delay line set, every pulse was converted into a sequence of seven pulses. 
To avoid overlapping pulses, the delay time should be shorter than the measurement time. The 
interval between delay lines was set to approximately 1 ns to ensure the total delay time was < 
10 ns.  

  

Fig. 3. Variation of light pulses. (a) Input light pulses and (b) detected pulse sequences. 
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Fig. 4. Speckle patterns in MMF at different wavelengths (left column) and corresponding pulse 
sequences (right column). (a), (b) 1550 nm, (c), (d) 1550.25 nm, (d), (e) 1550.5 nm. The white 
circles in each speckle pattern indicate the sampling positions of the MCF. (see supplementary 
movie) 

Table 1. Key Parameters for Data Acquisition 

Parameter Value 

Measurement rate 100 MHz 

Wavelength difference 0.8 pm 

Pulse width 0.5 ns 

Pulse interval 10 ns 

Delay time 1 ns 

 

The speckle pattern varied with the incident wavelength owing to the intermodal 
interference of the MMF. In the transverse plane of the MMF–MCF, each MCF core collected 
the speckle's pulse power at a fixed location. The delay lines converted the seven different 
pulses into a sequence that varied with the incident wavelength. Three pattern examples are 
presented in Figs. 4(a)–4(f) at wavelengths of 1550.00 nm, 1550.25 nm, and 1550.50 nm. The 
left column shows the speckle patterns of the MMF at different wavelengths, and the right 
column shows the corresponding pulse sequences. More results can be found in the 
supplementary movie. The wavelengths can be identified based on a combination of their peak 
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powers. We calculated the peak power of each pulse and normalized its intensity concerning 
the maximum power of each sequence. Subsequently, we input the seven-dimensional peak 
power of the pulse sequence and the corresponding wavelength labels into the MLP for training, 
thereby establishing a mapping to achieve wavelength estimation. 

Using high-speed sampling, we collected a large amount of data in a short time to easily 
establish a large dataset for adequate MLP training. In our experiment, 720 pulse sequences for 
each wavelength were captured at 1250 different wavelengths ranging from 1550 to 1551 nm 
(0.8 pm intervals). The sampling process was repeated 720 times at each wavelength to 
introduce the random noise caused by environmental perturbations. Therefore 900, 000 data 
sets were obtained. 

2.3 Multilayer perceptron 

MLP is a neuroscience-inspired machine learning method with supervised learning. MLPs are 
trained using input–output data to learn a nonlinear function approximator for classification or 
regression. We used a supervised deep neural network to map the relationship between pulse 
sequences and wavelengths. An MLP with multiple layers and neurons can capture abstract 
information, extract wavelength features, and is robust to environmental perturbations.  

The structure of the proposed network is shown in Fig. 5. The MLP consists of eight layers, 
comprising a batch normalization layer and dense layers. The input was a sequence of seven 
pulses extracted from a seven-dimensional speckle pattern. The input first passes through the 
batch normalization layer to prevent overfitting and accelerate convergence. The dense layers 
then extract features from the pulse sequences. After feature extraction, the layers were fully 
connected to the output layer of one neuron using regression to estimate the wavelength. The 
connection between the two fully connected layers is given by 

  j ij i ijoutput F w output b    (1) 

where ijw and ijb denote the weight and bias between the thi  and thj  layers, respectively. 

ioutput  and joutput represent the neuron vectors of the thi  and thj  layers, respectively. F  is 

an activation function that is usually nonlinear. 

 

Fig. 5.  Structure of proposed MLP (BN, batch normalization). 

As a regression task, the output of wavelength estimation is a continuous value. Thus, the 
corresponding activation function of the output layer is linear. Rectified linear units were used 
as the activation functions of the other layers to accelerate the calculation and prevent vanishing 
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gradients. The adaptive gradient momentum optimization algorithm was used to train the model 
and minimize the output errors. The weights and biases of the layers can be adjusted 
automatically to make the prediction closer to the target during backpropagation. We 
considered the mean absolute error (MAE) instead of the common root-mean-square error 
because the MAE provides a higher performance for evaluating the average error of a model. 

 11
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The proposed MLP was implemented on a Keras Python deep-learning library with a 
TensorFlow backend. Training and testing were performed using a computer with a graphics 
processing unit accelerator. After training, an MLP was established and used to estimate the 
incident wavelength from any pulse sequence. 

3. Results and discussion 

3.1 Measurement performance 

Based on the system described above, 900,000 data samples were collected, randomly shuffled, 
and divided into three sets: 80% for training (720,000 samples), 10% for validation (90,000 
samples), and 10% for testing (90,000 samples). Because of the random influence of 
environmental perturbations, each pulse sequence under the same wavelength label is different. 
This allowed us to assess the robustness of the model to environmental factors when estimating 
the wavelengths. Moreover, this classification method represented the entire data distribution 
well. We trained the MLP, established the relationship between the pulse sequence and 
wavelength using the training set, validated the overfitting using the validation set, and 
evaluated the performance of the well-trained MLP using the test set.  

During training, we optimized the model hyperparameters to maximize performance. 
Therefore, the reported results were based on the best combination of hyperparameters. The 
training and validation MAE values over 1000 epochs are shown in Fig. 6. The model's 
performance on the training and validation sets was used to judge the overfitting or underfitting. 
After 200 epochs, the MAE of the training samples converged to 2.8 pm, whereas that of the 
validation samples converged to 2.7 pm. Hence, the MLP was well trained and showed good 
generalization, given the small gap between the results from the training and validation sets.  

 

Fig. 6. Training and validation losses of MLP during training. 
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To evaluate the performance of the proposed wavemeter, the trained MLP was used to 
predict the wavelengths corresponding to the pulse sequences in the test set using samples that 
were not learned by the trained network. The experimental results for the wavelength estimation 
are shown in Fig. 7. The blue dots represent the estimation results, the black line is the fitted 
curve, and the red line represents the segmentation MAE corresponding to different 
wavelengths. The R-square of the data is 0.9998, demonstrating a strong linear relationship 
between the estimated and actual wavelengths. The equations for the fitting curve and R-square 
are as follows: 

1.00009 0.15409Estimated ActualWavelength Wavelength        (3) 

( ( ) ( ))
1

( ( ) ( ))
Actual Estimatedi

Actual Meani

Wavelength i Wavelength i
R square

Wavelength i Wavelength i


  





 (4) 

where WavelengthActual represents the actual wavelength, WavelengthEstimated represents the 
predicted wavelength of the model, and WavelengthMean represents the mean of the actual 
wavelength. The MAE for the wavelength estimation was 2.7 pm, whereas the estimation range 
of the wavelength was 1550–1551 nm. Hence, highly accurate wavelength measurements were 
performed using a small amount of information and simple MLP. The reduction in required 
data allowed us to increase the measurement speed substantially. Expanding the estimation 
range is feasible because multimode fibers are sensitive to the entire C-band and other 
wavelengths. Changes in the wavelengths of other bands also lead to speckle variations. 
However, the wavemeter is currently designed for single-wavelength measurements. When the 
incident light comprises a spectrum of multiple wavelengths, it can potentially lead to a notable 
decline in measurement accuracy. 

 

Fig. 7. Distribution of estimated wavelengths and corresponding segmentation MAE in the 
1550–1551 nm range. 

3.2 Measurement performance under high-speed 

To demonstrate the high-speed measurements using our wavemeter approach, we varied the 
incident wavelength at a speed of 100 MHz. Incident optical pulses with a frequency of 100 
MHz (measurement time=10ns) were sampled using the MCF, resulting in an output detection 
sequence with a pulse frequency of 1 GHz (pulse width = 1 ns). The experimental results are 
presented in Fig. 8. The black line represents the real wavelengths, and the red dots represent 
the estimated wavelengths. We used a tunable laser and SSB modulation to periodically change 
the incident wavelength from 1550 nm to 1550.8 nm at intervals of 0.08 nm. The MAE between 
the estimated and real values was still 2.7 pm, indicating that the measurement accuracy did 
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not change with variations in speed. The experimental results demonstrate that the proposed 
wavemeter can obtain accurate measurements at high rates. Higher detection speed requires a 
PD with a larger bandwidth and a DSO with a higher sampling rate. 

  

Fig. 8. Real (black line) and estimated (red dots) wavelengths varying over time. 

3.3 Measurement performance under different numbers of sampling cores 

Replacing a camera with an MCF substantially increases the measurement speed in a 
wavemeter but reduces the amount of acquired information. Approximately one million 
sampled pixels were reduced to seven data points, representing a drastic loss of information 
during sampling. We evaluated the performance provided by different numbers of sampling 
cores in the MCF to determine their effects on the accuracy. After training and testing using the 
MLP, we obtained the performance shown in Fig. 9. 

 

Fig. 9. Accuracy of wavemeter approach according to number of sampling cores in MCF. 

As expected, the accuracy improved with the number of sampling cores, indicating that 
more cores can improve the measurement. For more than four cores, the accuracy slowly 
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increased with further addition of cores. However, there was a tradeoff between measurement 
accuracy and speed because an increase in the number of sampling points simultaneously 
increased the length of the pulse sequence and reduced the measurement speed. Therefore, we 
use an MCF with seven cores to achieve high accuracy and speed. 

3.4 Measurement performance under different sampling locations 

In addition, the impact of wavelength variations on speckles may be more pronounced within 
a particular sampling area. Therefore, position sensitivity may occur because the seven cores 
of the MCF cannot cover the entire transverse plane of the MMF. To explore the correlation 
between wavelength prediction accuracy and core location, we examined the performance of 
the proposed method under various core locations by removing one core from the training set 
with the same architecture and hyperparameters as the MLP. Table 2 presents the results of the 
study. 

Table 2.  MAE obtained by removing one core in MCF 

Removed core 1 2 3 4 5 6 7 

MAE (pm) 3.80 3.72 3.48 3.37 3.38 4.01 3.13 

After removing cores at different locations, the estimation results remained stable with 
small fluctuations. The results confirm that no particular core has a decisive influence on the 
estimation accuracy. This suggests that the sampling position does not need to be specifically 
fixed because the speckle variation is random. 

4. Conclusions 

We demonstrated a compact wavemeter with a high measurement rate and accuracy using an 
MMF and MCF setup. Based on the wavelength-dependent speckle patterns generated by the 
intermodal interference of the MMF, we used a seven-core MCF instead of a camera to sample 
the resulting speckle pattern, significantly improving the measurement speed and reducing 
costs. We experimentally demonstrated a measurement rate of 100 MHz with a resolution of 
2.7 pm in a 1 nm operation bandwidth. Wavemeter performance can be further improved by 
increasing the spatial sampling channels of the MCF and optimizing the design of the MMF. 
The proposed measurement approach is promising for research and applications. 
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Appendix 

A. Principle of frequency shift 

When an I/Q modulator is used for single-sideband modulation, the modulators of the I and Q 
branches are biased at the null point. The optical field at the modulator output is 

1 2

1
[sin( ) sin( )]

2out inE E V j V
V V 

 
                                            (A1) 

where Ein is the input optical field, V1 and V2 are the two voltage waveforms used to drive 
the I and Q arms, and Vπ is the voltage required for the transfer function to change from the 
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minimum to the maximum for each intensity modulator. We loaded the cosine and sine signals 
of frequency fm onto the two arms of the I/Q modulator 

 1 0

2 0

cos(2 )

sin(2 )
m

m

V V f t

V V f t





 

 (A2) 

where V0 is the voltage amplitude of the signal. When the I/Q modulator operates in the 
linear range, the output optical field can be approximately expressed as 

 1 2
0 0 0

( )
exp( 2 ( ) ) / 2

2out in m

V jV
E E E j f f t V V

V 



 


     (A3) 

where E0 is the amplitude of the input optical field, f0 is the optical frequency of the input 
light, and fm is the required frequency shift. 

Fig. S1 shows a schematic diagram of the IQ modulation process. The laser generates 
continuous light of a fixed wavelength. The red and blue curves represent signals modulated 
onto the I and Q paths of the IQ modulator, respectively. The yellow curve represents the output 
of the optical pulses of varying wavelengths. In our experiment, the frequency difference (fm2 - 
fm1) between adjacent pulses is 100 MHz, and the frequency difference between adjacent 
wavelengths is also 100 MHz, corresponding to a wavelength spacing of approximately 0.8 pm 
(λ2 - λ1). The pulse width and interval of the output light could be adjusted using an arbitrary 
waveform generator (AWG). 

 

 
Fig. S1. Schematic diagram of IQ modulation process. 

B. Optical fiber parameter 

Table B1. Key Parameters for MMF 

Parameter Value 

Core diameter 105 μm 

Cladding diameter 125 μm 

Numerical aperture 0.22 

Attenuation ≤ 8dB/km (@1300nm) 

ACCEPTED ARTICLE PREVIEW 



Fiber core material Silica glass 

Fiber core material Fluorine-doped silica glass 

  

Table B2. Key Parameters for MCF 

Parameter Value 

Core diameter 8 μm 

Core pitch 42 μm 

Cladding diameter 150 μm 

Attenuation ≤ 0.3 dB/km (@1500 nm) 

Inter-core crosstalk ≤ -45 dB/100 km (@1500 nm) 

Chromatic dispersion 17 pm/nmꞏkm (@1500 nm) 

C. Micrographs of MCF and MMF 

     

Fig. S2. Micrographs of MCF and MMF. 
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